⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cell_hex27.h

📁 一个用来实现偏微分方程中网格的计算库
💻 H
字号:
// $Id: cell_hex27.h 2501 2007-11-20 02:33:29Z benkirk $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA#ifndef __cell_hex27_h__#define __cell_hex27_h__// C++ includes// Local includes#include "cell_hex.h"/** * The \p Hex27 is an element in 3D composed of 27 nodes. * It is numbered like this:   \verbatim   HEX27:      7              18             6     			                     o--------------o--------------o     			                    /:             /              /|     			                   / :            /              / |     			                  /  :           /              /  |     			               19/   :        25/            17/   |     			                o--------------o--------------o    |     			               /     :        /              /|    |     			              /    15o       /    23o       / |  14o            /       :      /              /  |   /|          4/        :   16/             5/   |  / |          o--------------o--------------o    | /  |     			           |         :    |   26         |    |/   |          |  24o    :    |    o         |  22o    |          |         :    |       10     |   /|    |                                     |        3o....|.........o....|../.|....o          |        .     |              | /  |   / 2           |       .    21|            13|/   |  /          12 o--------------o--------------o    | /              |     .        |              |    |/               |  11o         | 20o          |    o                |   .          |              |   / 9               |  .           |              |  /                  | .            |              | /                   |.             |              |/                    o--------------o--------------o                     0              8              1                   \endverbatim */// ------------------------------------------------------------// Hex27 class definitionclass Hex27 : public Hex{public:  /**   * Constructor.  By default this element has no parent.   */  Hex27  (Elem* p=NULL);    /**   * @returns \p HEX27   */  ElemType     type ()   const { return HEX27; }  /**   * @returns 27   */  unsigned int n_nodes() const { return 27; }    /**   * @returns 8   */  unsigned int n_sub_elem() const { return 8; }    /**   * @returns true iff the specified (local) node number is a vertex.   */  virtual bool is_vertex(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is an edge.   */  virtual bool is_edge(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is a face.   */  virtual bool is_face(const unsigned int i) const;    /*   * @returns true iff the specified (local) node number is on the   * specified side   */  virtual bool is_node_on_side(const unsigned int n,			       const unsigned int s) const;    /*   * @returns true iff the specified (local) node number is on the   * specified edge   */  virtual bool is_node_on_edge(const unsigned int n,			       const unsigned int e) const;  /*   * @returns true iff the element map is definitely affine within   * numerical tolerances   */  virtual bool has_affine_map () const;  /**   * @returns SECOND   */  Order default_order() const { return SECOND; }  /**   * @returns an id associated with the \p s side of this element.   * The id is not necessariy unique, but should be close.  This is   * particularly useful in the \p MeshBase::find_neighbors() routine.   *   * We reimplemenet this method here for the \p Hex27 since we can   * use the center node of each face to provide a perfect (unique)   * key.   */  unsigned int key (const unsigned int s) const;    /**   * Builds a \p QUAD9 built coincident with face i.     * The \p AutoPtr<Elem> handles the memory aspect.   */  AutoPtr<Elem> build_side (const unsigned int i,			    bool proxy) const;  /**   * Builds a \p EDGE3 built coincident with edge i.     * The \p AutoPtr<Elem> handles the memory aspect.   */  AutoPtr<Elem> build_edge (const unsigned int i) const;  virtual void connectivity(const unsigned int sc,			    const IOPackage iop,			    std::vector<unsigned int>& conn) const;  /**   * @returns 2 for all edge nodes, 4 for all face nodes, and   * 8 for the bubble node   */  unsigned int n_second_order_adjacent_vertices (const unsigned int) const;  /**   * @returns the element-local number of the  \f$ v^{th} \f$ vertex   * that defines the \f$ n^{th} \f$ second-order node.   * Note that \p n is counted as depicted above, \f$ 8 \le n < 27 \f$.   */  unsigned short int second_order_adjacent_vertex (const unsigned int n,						   const unsigned int v) const;  /**   * @returns the child number \p c and element-local index \p v of the   * \f$ n^{th} \f$ second-order node on the parent element.  Note that   * the return values are always less \p this->n_children() and    * \p this->child(c)->n_vertices(), while \p n has to be greater or equal   * to \p * this->n_vertices().  For linear elements this returns 0,0.   * On refined second order elements, the return value will satisfy   * \p this->get_node(n)==this->child(c)->get_node(v)   */  virtual std::pair<unsigned short int, unsigned short int> 	  second_order_child_vertex (const unsigned int n) const;  /**   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ side to   * element node numbers.   */  static const unsigned int side_nodes_map[6][9];  /**   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ edge to   * element node numbers.   */  static const unsigned int edge_nodes_map[12][3];  protected:    #ifdef ENABLE_AMR  /**   * Matrix used to create the elements children.   */  float embedding_matrix (const unsigned int i,			  const unsigned int j,			  const unsigned int k) const  { return _embedding_matrix[i][j][k]; }  /**   * Matrix that computes new nodal locations/solution values   * from current nodes/solution.   */  static const float _embedding_matrix[8][27][27];  #endifprivate:    /**   * Matrix that tells which vertices define the location   * of mid-side (or second-order) nodes.  This matrix only   * covers the nodes that are unique to \p Hex27, while the   * second-order-nodes that are identical with \p Hex20 are covered   * through the \p _second_order_adjacent_vertices matrix in   * \p cell_hex.C.  Note that this matrix also does @e not    * cover the bubble node.  The interpolation   * is trivial and would only blow up the size of this   * matrix.   */  static const unsigned short int _remaining_second_order_adjacent_vertices[6][4];};// ------------------------------------------------------------// Hex27 class member functionsinlineHex27::Hex27(Elem* p) :  Hex(Hex27::n_nodes(), p) {}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -