⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 face_inf_quad6.h

📁 一个用来实现偏微分方程中网格的计算库
💻 H
字号:
// $Id: face_inf_quad6.h 2501 2007-11-20 02:33:29Z benkirk $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA#ifndef __inf_quad6_h__#define __inf_quad6_h__#include "libmesh_config.h"#ifdef ENABLE_INFINITE_ELEMENTS// C++ includes// Local includes#include "face_inf_quad.h"/** * The \p INFQUAD6 is an infinite element in 2D composed of 6 nodes. * It is numbered like this:   \verbatim             2     5     3   INFQUAD6: o     o     o   closer to infinity             |           |             |           |             |           |               |           |             |           |             o-----o-----o   base side             0     4     1   \endverbatim */// ------------------------------------------------------------// InfQuad6 class definitionclass InfQuad6 : public InfQuad{public:  /**   * Constructor.  By default this element has no parent.   */  InfQuad6 (Elem* p=NULL):    InfQuad(InfQuad6::n_nodes(), p) {}  /**   * Constructor.  Explicitly specifies the number of   * nodes and neighbors for which storage will be allocated.   */  InfQuad6 (const unsigned int nn,	    const unsigned int ns,	    Elem* p) :    InfQuad(nn, ns, p) {}    /**   * @returns 6   */  unsigned int n_nodes() const { return 6; }    /**   * @returns \p INFQUAD6   */  ElemType type () const { return INFQUAD6; }    /**   * @returns 2   */  unsigned int n_sub_elem() const { return 2; }    /**   * @returns true iff the specified (local) node number is a vertex.   */  virtual bool is_vertex(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is an edge.   */  virtual bool is_edge(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is a face.   */  virtual bool is_face(const unsigned int i) const;    /*   * @returns true iff the specified (local) node number is on the   * specified side   */  virtual bool is_node_on_side(const unsigned int n,			       const unsigned int s) const;    /*   * @returns true iff the specified (local) node number is on the   * specified edge (== is_node_on_side in 2D)   */  virtual bool is_node_on_edge(const unsigned int n,			       const unsigned int e) const  { return this->is_node_on_side(n,e); }      /**   * @returns \p SECOND   */  Order default_order() const { return SECOND; }    /**   * Creates and returns an \p Edge3 for the base (0) side, and an \p InfEdge2 for   * the sides 1, 2.   */  AutoPtr<Elem> build_side (const unsigned int i,			    bool proxy) const;  virtual void connectivity(const unsigned int sf,			    const IOPackage iop,			    std::vector<unsigned int>& conn) const;  /**   * @returns 2 for all \p n   */  unsigned int n_second_order_adjacent_vertices (const unsigned int) const      { return 2; }  /**   * @returns the element-local number of the  \f$ v^{th} \f$ vertex   * that defines the \f$ n^{th} \f$ second-order node.   * Note that \p n is counted as depicted above, \f$ 4 \le n < 6 \f$.   */  unsigned short int second_order_adjacent_vertex (const unsigned int n,						   const unsigned int v) const;    /**   * @returns the child number \p c and element-local index \p v of the   * \f$ n^{th} \f$ second-order node on the parent element.  Note that   * the return values are always less \p this->n_children() and    * \p this->child(c)->n_vertices(), while \p n has to be greater or equal   * to \p * this->n_vertices().  For linear elements this returns 0,0.   * On refined second order elements, the return value will satisfy   * \p this->get_node(n)==this->child(c)->get_node(v)   */  virtual std::pair<unsigned short int, unsigned short int> 	  second_order_child_vertex (const unsigned int n) const;  /**   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ side to   * element node numbers.   */  static const unsigned int side_nodes_map[3][3];    protected:    #ifdef ENABLE_AMR    /**   * Matrix used to create the elements children.   */  float embedding_matrix (const unsigned int i,			  const unsigned int j,			  const unsigned int k) const  { return _embedding_matrix[i][j][k]; }  /**   * Matrix that computes new nodal locations/solution values   * from current nodes/solution.   */  static const float _embedding_matrix[2][6][6];  #endifprivate:    /**   * Matrix that tells which vertices define the location   * of mid-side (or second-order) nodes   */  static const unsigned short int _second_order_adjacent_vertices[2][2];};#endif // ifdef ENABLE_INFINITE_ELEMENTS#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -