⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cell_inf_hex18.h

📁 一个用来实现偏微分方程中网格的计算库
💻 H
字号:
// $Id: cell_inf_hex18.h 2788 2008-04-13 02:05:22Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA#ifndef __cell_inf_hex18_h__#define __cell_inf_hex18_h__// C++ includes// Local includes#include "libmesh_config.h"#ifdef ENABLE_INFINITE_ELEMENTS#include "cell_inf_hex.h"/** * The \p InfHex18 is an infinite element in 3D composed of 18 nodes. * It is numbered like this:   \verbatim   INFHEX18:   7              14             6     			                     o              o              o     closer to infinity               :              :              |     	               :              :              |     	               :              :              |     	          15    :        17    :        13    |                   o    :         o    :         o    |     	          :    :              :         |    |     	          :    :              :         |    |               :    :              :         |    |          4    :    :   12         :    5    |    |          o    :    :    o         :    o    |    |              |    :    :    |         :    |    |    |          |    :    :    |         :    |    |    |          |    :    :    |       10:    |    |    |                |    :   3o....|.........o....|....|....o         |    :   .     |              |    |   / 2           |    :  .      |              |    |  /             |    : .       |              |    | /              |    :.        |              |    |/               |  11o         |  16o         |    o           base face     |   .          |              |   / 9               |  .           |              |  /                  | .            |              | /                   |.             |              |/                    o--------------o--------------o                     0              8              1                   \endverbatim */// ------------------------------------------------------------// InfHex18 class definitionclass InfHex18 : public InfHex{public:  /**   * Constructor.  By default this element has no parent.   */  InfHex18  (Elem* p=NULL);      /**   * @returns 18.  The \p InfHex18 has 18 nodes.   */  unsigned int n_nodes() const { return 18; }    /**   * @returns \p INFHEX18   */  ElemType     type ()   const { return INFHEX18; }    /**   * @returns 4   */  unsigned int n_sub_elem() const { return 4; }    /**   * @returns SECOND   */  Order default_order() const { return SECOND; }  /**   * @returns true iff the specified (local) node number is a vertex.   */  virtual bool is_vertex(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is an edge.   */  virtual bool is_edge(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is a face.   */  virtual bool is_face(const unsigned int i) const;    /*   * @returns true iff the specified (local) node number is on the   * specified side   */  virtual bool is_node_on_side(const unsigned int n,			       const unsigned int s) const;    /*   * @returns true iff the specified (local) node number is on the   * specified edge   */  virtual bool is_node_on_edge(const unsigned int n,			       const unsigned int e) const;    /**   * Returns a \p QUAD9 built coincident with face 0, an \p INFQUAD6    * built coincident with faces 1 to 4. Note that the \p AutoPtr<Elem>   * takes care of freeing memory.   */  AutoPtr<Elem> build_side (const unsigned int i,			    bool proxy) const;  /**   * Returns a \p EDGE3 built coincident with edges 0-3, an \p INFEDGE2    * built coincident with edges 4 to 11. Note that the \p AutoPtr<Elem>   * takes care of freeing memory.   */  AutoPtr<Elem> build_edge (const unsigned int i) const;  /**   * @returns an id associated with the \p s side of this element.   * The id is not necessariy unique, but should be close.  This is   * particularly useful in the \p MeshBase::find_neighbors() routine.   *   * We reimplemenet this method here for the \p InfHex18 since we can   * use the center node of the bottom face to provide a perfect (unique)   * key.   */  unsigned int key (const unsigned int s) const;  virtual void connectivity(const unsigned int sc,			    const IOPackage iop,			    std::vector<unsigned int>& conn) const;//   void tecplot_connectivity(const unsigned int sc,// 			    std::vector<unsigned int>& conn) const;//   void vtk_connectivity(const unsigned int,// 			std::vector<unsigned int>*) const//   { libmesh_error(); }    unsigned int vtk_element_type (const unsigned int) const  { return 12; }  /**   * @returns 2 for all edge nodes, 4 for face nodes   */  unsigned int n_second_order_adjacent_vertices (const unsigned int) const;  /**   * @returns the element-local number of the  \f$ v^{th} \f$ vertex   * that defines the \f$ n^{th} \f$ second-order node.   * Note that \p n is counted as depicted above, \f$ 8 \le n < 18 \f$.   */  unsigned short int second_order_adjacent_vertex (const unsigned int n,						   const unsigned int v) const;  /**   * @returns the child number \p c and element-local index \p v of the   * \f$ n^{th} \f$ second-order node on the parent element.  Note that   * the return values are always less \p this->n_children() and    * \p this->child(c)->n_vertices(), while \p n has to be greater or equal   * to \p * this->n_vertices().  For linear elements this returns 0,0.   * On refined second order elements, the return value will satisfy   * \p this->get_node(n)==this->child(c)->get_node(v)   */  virtual std::pair<unsigned short int, unsigned short int> 	  second_order_child_vertex (const unsigned int n) const;  /**   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ side to   * element node numbers.   */  static const unsigned int side_nodes_map[5][9];  /**   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ edge to   * element node numbers.   */  static const unsigned int edge_nodes_map[8][3];   protected:    #ifdef ENABLE_AMR  /**   * Matrix used to create the elements children.   */  float embedding_matrix (const unsigned int i,			  const unsigned int j,			  const unsigned int k) const  { return _embedding_matrix[i][j][k]; }  /**   * Matrix that computes new nodal locations/solution values   * from current nodes/solution.   */  static const float _embedding_matrix[4][18][18];    #endif};// ------------------------------------------------------------// InfHex18 class member functionsinlineInfHex18::InfHex18(Elem* p) :  InfHex(InfHex18::n_nodes(), p) {}#endif  // ifdef ENABLE_INFINITE_ELEMENTS#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -