📄 ex0.c
字号:
/* $Id: ex0.C 2837 2008-05-08 17:23:37Z roystgnr $ *//* The Next Great Finite Element Library. *//* Copyright (C) 2003 Benjamin S. Kirk *//* This library is free software; you can redistribute it and/or *//* modify it under the terms of the GNU Lesser General Public *//* License as published by the Free Software Foundation; either *//* version 2.1 of the License, or (at your option) any later version. *//* This library is distributed in the hope that it will be useful, *//* but WITHOUT ANY WARRANTY; without even the implied warranty of *//* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *//* Lesser General Public License for more details. *//* You should have received a copy of the GNU Lesser General Public *//* License along with this library; if not, write to the Free Software *//* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ // <h1>Example 0 - Solving 1D PDE Using Adaptive Mesh Refinement</h1> // // This example demonstrates how to solve a simple 1D problem // using adaptive mesh refinement. The PDE that is solved is: // -epsilon*u''(x) + u(x) = 1, on the domain [0,1] with boundary conditions // u(0) = u(1) = 0 and where epsilon << 1. // // The approach used to solve 1D problems in libMesh is virtually identical to // solving 2D or 3D problems, so in this sense this example represents a good // starting point for new users. Note that many concepts are used in this // example which are explained more fully in subsequent examples.// Libmesh includes#include "mesh.h"#include "mesh_generation.h"#include "edge_edge3.h"#include "gnuplot_io.h"#include "equation_systems.h"#include "linear_implicit_system.h"#include "fe.h"#include "quadrature_gauss.h"#include "sparse_matrix.h"#include "dof_map.h"#include "numeric_vector.h"#include "dense_matrix.h"#include "dense_vector.h"#include "error_vector.h"#include "kelly_error_estimator.h"#include "mesh_refinement.h"void assemble_1D(EquationSystems& es, const std::string& system_name);int main(int argc, char** argv){ // Initialize the library. This is necessary because the library // may depend on a number of other libraries (i.e. MPI and Petsc) // that require initialization before use. When the LibMeshInit // object goes out of scope, other libraries and resources are // finalized. LibMeshInit init (argc, argv);#ifndef ENABLE_AMR if (libMesh::processor_id() == 0) std::cerr << "ERROR: This example requires libMesh to be\n" << "compiled with AMR support!" << std::endl; return 0;#else // Create a new 1 dimensional mesh const unsigned int dim = 1; Mesh mesh(dim); // Build a 1D mesh with 4 elements from x=0 to x=1, using // EDGE3 (i.e. quadratic) 1D elements. They are called EDGE3 elements // because a quadratic element contains 3 nodes. MeshTools::Generation::build_line(mesh,4,0.,1.,EDGE3); // Define the equation systems object and the system we are going // to solve. See Example 2 for more details. EquationSystems equation_systems(mesh); LinearImplicitSystem& system = equation_systems.add_system <LinearImplicitSystem>("1D"); // Add a variable "u" to the system, using second-order approximation system.add_variable("u",SECOND); // Give the system a pointer to the matrix assembly function. This // will be called when needed by the library. system.attach_assemble_function(assemble_1D); // Define the mesh refinement object that takes care of adaptively // refining the mesh. MeshRefinement mesh_refinement(mesh); // These parameters determine the proportion of elements that will // be refined and coarsened. Any element within 30% of the maximum // error on any element will be refined, and any element within 30% // of the minimum error on any element might be coarsened mesh_refinement.refine_fraction() = 0.7; mesh_refinement.coarsen_fraction() = 0.3; // We won't refine any element more than 5 times in total mesh_refinement.max_h_level() = 5; // Initialize the data structures for the equation system. equation_systems.init(); // Refinement parameters const unsigned int max_r_steps = 5; // Refine the mesh 5 times // Define the refinement loop for(unsigned int r_step=0; r_step<=max_r_steps; r_step++) { // Solve the equation system equation_systems.get_system("1D").solve(); // We need to ensure that the mesh is not refined on the last iteration // of this loop, since we do not want to refine the mesh unless we are // going to solve the equation system for that refined mesh. if(r_step != max_r_steps) { // Objects for error estimation, see Example 10 for more details. ErrorVector error; KellyErrorEstimator error_estimator; // Compute the error for each active element error_estimator.estimate_error(system, error); // Flag elements to be refined and coarsened mesh_refinement.flag_elements_by_error_fraction (error); // Perform refinement and coarsening mesh_refinement.refine_and_coarsen_elements(); // Reinitialize the equation_systems object for the newly refined // mesh. One of the steps in this is project the solution onto the // new mesh equation_systems.reinit(); } } // Construct gnuplot plotting object, pass in mesh, title of plot // and boolean to indicate use of grid in plot. The grid is used to // show the edges of each element in the mesh. GnuPlotIO plot(mesh,"Example 0", GnuPlotIO::GRID_ON); // Write out script to be called from within gnuplot: // Load gnuplot, then type "call 'gnuplot_script'" from gnuplot prompt plot.write_equation_systems("gnuplot_script",equation_systems);#endif // #ifndef ENABLE_AMR // All done. libMesh objects are destroyed here. Because the // LibMeshInit object was created first, its destruction occurs // last, and it's destructor finalizes any external libraries and // checks for leaked memory. return 0;}// Define the matrix assembly function for the 1D PDE we are solvingvoid assemble_1D(EquationSystems& es, const std::string& system_name){#ifdef ENABLE_AMR // It is a good idea to check we are solving the correct system libmesh_assert(system_name == "1D"); // Get a reference to the mesh object const MeshBase& mesh = es.get_mesh(); // The dimension we are using, i.e. dim==1 const unsigned int dim = mesh.mesh_dimension(); // Get a reference to the system we are solving LinearImplicitSystem& system = es.get_system<LinearImplicitSystem>("1D"); // Get a reference to the DofMap object for this system. The DofMap object // handles the index translation from node and element numbers to degree of // freedom numbers. DofMap's are discussed in more detail in future examples. const DofMap& dof_map = system.get_dof_map(); // Get a constant reference to the Finite Element type for the first // (and only) variable in the system. FEType fe_type = dof_map.variable_type(0); // Build a finite element object of the specified type. The build // function dynamically allocates memory so we use an AutoPtr in this case. // An AutoPtr is a pointer that cleans up after itself. See examples 3 and 4 // for more details on AutoPtr. AutoPtr<FEBase> fe(FEBase::build(dim, fe_type)); // Tell the finite element object to use fifth order Gaussian quadrature QGauss qrule(dim,FIFTH); fe->attach_quadrature_rule(&qrule); // Here we define some references to cell-specific data that will be used to // assemble the linear system. // The element Jacobian * quadrature weight at each integration point. const std::vector<Real>& JxW = fe->get_JxW(); // The element shape functions evaluated at the quadrature points. const std::vector<std::vector<Real> >& phi = fe->get_phi(); // The element shape function gradients evaluated at the quadrature points. const std::vector<std::vector<RealGradient> >& dphi = fe->get_dphi(); // Declare a dense matrix and dense vector to hold the element matrix // and right-hand-side contribution DenseMatrix<Number> Ke; DenseVector<Number> Fe; // This vector will hold the degree of freedom indices for the element. // These define where in the global system the element degrees of freedom // get mapped. std::vector<unsigned int> dof_indices; // We now loop over all the active elements in the mesh in order to calculate // the matrix and right-hand-side contribution from each element. Use a // const_element_iterator to loop over the elements. We make // el_end const as it is used only for the stopping condition of the loop. MeshBase::const_element_iterator el = mesh.active_local_elements_begin(); const MeshBase::const_element_iterator el_end = mesh.active_local_elements_end(); // Note that ++el is preferred to el++ when using loops with iterators for( ; el != el_end; ++el) { // It is convenient to store a pointer to the current element const Elem* elem = *el; // Get the degree of freedom indices for the current element. // These define where in the global matrix and right-hand-side this // element will contribute to. dof_map.dof_indices(elem, dof_indices); // Compute the element-specific data for the current element. This // involves computing the location of the quadrature points (q_point) // and the shape functions (phi, dphi) for the current element. fe->reinit(elem); // Store the number of local degrees of freedom contained in this element const int n_dofs = dof_indices.size(); // We resize and zero out Ke and Fe (resize() also clears the matrix and // vector). In this example, all elements in the mesh are EDGE3's, so // Ke will always be 3x3, and Fe will always be 3x1. If the mesh contained // different element types, then the size of Ke and Fe would change. Ke.resize(n_dofs, n_dofs); Fe.resize(n_dofs); // Now loop over quadrature points to handle numerical integration for(unsigned int qp=0; qp<qrule.n_points(); qp++) { // Now build the element matrix and right-hand-side using loops to // integrate the test functions (i) against the trial functions (j). for(unsigned int i=0; i<phi.size(); i++) { Fe(i) += JxW[qp]*phi[i][qp]; for(unsigned int j=0; j<phi.size(); j++) { Ke(i,j) += JxW[qp]*(1.e-3*dphi[i][qp]*dphi[j][qp] + phi[i][qp]*phi[j][qp]); } } } // At this point we have completed the matrix and RHS summation. The // final step is to apply boundary conditions, which in this case are // simple Dirichlet conditions with u(0) = u(1) = 0. // Define the penalty parameter used to enforce the BC's double penalty = 1.e10; // Loop over the sides of this element. For a 1D element, the "sides" // are defined as the nodes on each edge of the element, i.e. 1D elements // have 2 sides. for(unsigned int s=0; s<elem->n_sides(); s++) { // If this element has a NULL neighbor, then it is on the edge of the // mesh and we need to enforce a boundary condition using the penalty // method. if(elem->neighbor(s) == NULL) { Ke(s,s) += penalty; Fe(s) += 0*penalty; } } // This is a function call that is necessary when using adaptive // mesh refinement. See Example 10 for more details. dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices); // Add Ke and Fe to the global matrix and right-hand-side. system.matrix->add_matrix(Ke, dof_indices); system.rhs->add_vector(Fe, dof_indices); }#endif // #ifdef ENABLE_AMR}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -