⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 naviersystem.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
📖 第 1 页 / 共 2 页
字号:
/* $Id: naviersystem.C 2790 2008-04-13 16:43:55Z roystgnr $ *//* The Next Great Finite Element Library. *//* Copyright (C) 2003  Benjamin S. Kirk *//* This library is free software; you can redistribute it and/or *//* modify it under the terms of the GNU Lesser General Public *//* License as published by the Free Software Foundation; either *//* version 2.1 of the License, or (at your option) any later version. *//* This library is distributed in the hope that it will be useful, *//* but WITHOUT ANY WARRANTY; without even the implied warranty of *//* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *//* Lesser General Public License for more details. *//* You should have received a copy of the GNU Lesser General Public *//* License along with this library; if not, write to the Free Software *//* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */#include "getpot.h"#include "naviersystem.h"#include "boundary_info.h"#include "fe_base.h"#include "fe_interface.h"#include "mesh.h"#include "quadrature.h"void NavierSystem::init_data (){  const unsigned int dim = this->get_mesh().mesh_dimension();  // Add the pressure variable "p". This will  // be approximated with a first-order basis,  // providing an LBB-stable pressure-velocity pair.  // Add the velocity components "u" & "v".  They  // will be approximated using second-order approximation.  this->add_variable ("u", SECOND);  u_var = 0;  this->add_variable ("v", SECOND);  v_var = 1;  if (dim == 3)    {      this->add_variable ("w", SECOND);      w_var = 2;      p_var = 3;    }  else    {      w_var = u_var;      p_var = 2;    }  this->add_variable ("p", FIRST);  // Do the parent's initialization after variables are defined  FEMSystem::init_data();  // Tell the system to march velocity forward in time, but   // leave p as a constraint only  this->time_evolving(u_var);  this->time_evolving(v_var);  if (dim == 3)    this->time_evolving(w_var);  // Get references to the finite elements we need  fe_velocity = element_fe[this->variable_type(u_var)];  fe_pressure = element_fe[this->variable_type(p_var)];  fe_side_vel = side_fe[this->variable_type(u_var)];  // To enable FE optimizations, we should prerequest all the data  // we will need to build the linear system.  fe_velocity->get_JxW();  fe_velocity->get_phi();  fe_velocity->get_dphi();  fe_velocity->get_xyz();    fe_pressure->get_phi();  fe_side_vel->get_JxW();  fe_side_vel->get_phi();  // Check the input file for Reynolds number  GetPot infile("navier.in");  Reynolds = infile("Reynolds", 1.);  application = infile("application", 0);  // Useful debugging options  // Set verify_analytic_jacobians to 1e-6 to use  this->verify_analytic_jacobians = infile("verify_analytic_jacobians", 0);  this->print_jacobians = infile("print_jacobians", false);  this->print_element_jacobians = infile("print_element_jacobians", false);}bool NavierSystem::element_time_derivative (bool request_jacobian){  // First we get some references to cell-specific data that  // will be used to assemble the linear system.  // Element Jacobian * quadrature weights for interior integration  const std::vector<Real> &JxW = fe_velocity->get_JxW();  // The velocity shape functions at interior quadrature points.  const std::vector<std::vector<Real> >& phi = fe_velocity->get_phi();  // The velocity shape function gradients at interior  // quadrature points.  const std::vector<std::vector<RealGradient> >& dphi =    fe_velocity->get_dphi();  // The pressure shape functions at interior  // quadrature points.  const std::vector<std::vector<Real> >& psi = fe_pressure->get_phi();  // Physical location of the quadrature points  const std::vector<Point>& qpoint = fe_velocity->get_xyz();   // The number of local degrees of freedom in each variable  const unsigned int n_p_dofs = dof_indices_var[p_var].size();  const unsigned int n_u_dofs = dof_indices_var[u_var].size();   libmesh_assert (n_u_dofs == dof_indices_var[v_var].size());   // The subvectors and submatrices we need to fill:  const unsigned int dim = this->get_mesh().mesh_dimension();  DenseSubMatrix<Number> &Kuu = *elem_subjacobians[u_var][u_var];  DenseSubMatrix<Number> &Kvv = *elem_subjacobians[v_var][v_var];  DenseSubMatrix<Number> &Kww = *elem_subjacobians[w_var][w_var];  DenseSubMatrix<Number> &Kuv = *elem_subjacobians[u_var][v_var];  DenseSubMatrix<Number> &Kuw = *elem_subjacobians[u_var][w_var];  DenseSubMatrix<Number> &Kvu = *elem_subjacobians[v_var][u_var];  DenseSubMatrix<Number> &Kvw = *elem_subjacobians[v_var][w_var];  DenseSubMatrix<Number> &Kwu = *elem_subjacobians[w_var][u_var];  DenseSubMatrix<Number> &Kwv = *elem_subjacobians[w_var][v_var];  DenseSubMatrix<Number> &Kup = *elem_subjacobians[u_var][p_var];  DenseSubMatrix<Number> &Kvp = *elem_subjacobians[v_var][p_var];  DenseSubMatrix<Number> &Kwp = *elem_subjacobians[w_var][p_var];  DenseSubVector<Number> &Fu = *elem_subresiduals[u_var];  DenseSubVector<Number> &Fv = *elem_subresiduals[v_var];  DenseSubVector<Number> &Fw = *elem_subresiduals[w_var];        // Now we will build the element Jacobian and residual.  // Constructing the residual requires the solution and its  // gradient from the previous timestep.  This must be  // calculated at each quadrature point by summing the  // solution degree-of-freedom values by the appropriate  // weight functions.  unsigned int n_qpoints = element_qrule->n_points();  for (unsigned int qp=0; qp != n_qpoints; qp++)    {      // Compute the solution & its gradient at the old Newton iterate      Number p = interior_value(p_var, qp),             u = interior_value(u_var, qp),             v = interior_value(v_var, qp),             w = interior_value(w_var, qp);      Gradient grad_u = interior_gradient(u_var, qp),               grad_v = interior_gradient(v_var, qp),               grad_w = interior_gradient(w_var, qp);      // Definitions for convenience.  It is sometimes simpler to do a      // dot product if you have the full vector at your disposal.      NumberVectorValue U     (u,     v);      if (dim == 3)        U(2) = w;      const Number  u_x = grad_u(0);      const Number  u_y = grad_u(1);      const Number  u_z = (dim == 3)?grad_u(2):0;      const Number  v_x = grad_v(0);      const Number  v_y = grad_v(1);      const Number  v_z = (dim == 3)?grad_v(2):0;      const Number  w_x = (dim == 3)?grad_w(0):0;      const Number  w_y = (dim == 3)?grad_w(1):0;      const Number  w_z = (dim == 3)?grad_w(2):0;      // Value of the forcing function at this quadrature point      Point f = this->forcing(qpoint[qp]);      // First, an i-loop over the velocity degrees of freedom.      // We know that n_u_dofs == n_v_dofs so we can compute contributions      // for both at the same time.      for (unsigned int i=0; i != n_u_dofs; i++)        {          Fu(i) += JxW[qp] *                   (-Reynolds*(U*grad_u)*phi[i][qp] + // convection term                    p*dphi[i][qp](0) -                // pressure term		    (grad_u*dphi[i][qp]) +            // diffusion term		    f(0)*phi[i][qp]                   // forcing function		    );                      Fv(i) += JxW[qp] *                   (-Reynolds*(U*grad_v)*phi[i][qp] + // convection term                    p*dphi[i][qp](1) -                // pressure term		    (grad_v*dphi[i][qp]) +            // diffusion term		    f(1)*phi[i][qp]                   // forcing function		    );          if (dim == 3)          Fw(i) += JxW[qp] *                   (-Reynolds*(U*grad_w)*phi[i][qp] + // convection term                    p*dphi[i][qp](2) -                // pressure term		    (grad_w*dphi[i][qp]) +            // diffusion term		    f(2)*phi[i][qp]                   // forcing function		    );          // Note that the Fp block is identically zero unless we are using          // some kind of artificial compressibility scheme...          // Matrix contributions for the uu and vv couplings.          if (request_jacobian)            for (unsigned int j=0; j != n_u_dofs; j++)              {                Kuu(i,j) += JxW[qp] * /* convection term */      (-Reynolds*(U*dphi[j][qp])*phi[i][qp] - /* diffusion term  */       (dphi[i][qp]*dphi[j][qp]) - /* Newton term     */       Reynolds*u_x*phi[i][qp]*phi[j][qp]);                Kuv(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*u_y*phi[i][qp]*phi[j][qp];                Kvv(i,j) += JxW[qp] * /* convection term */      (-Reynolds*(U*dphi[j][qp])*phi[i][qp] - /* diffusion term  */       (dphi[i][qp]*dphi[j][qp]) - /* Newton term     */       Reynolds*v_y*phi[i][qp]*phi[j][qp]);                Kvu(i,j) += JxW[qp] *  /* Newton term     */      -Reynolds*v_x*phi[i][qp]*phi[j][qp];                if (dim == 3)                  {                    Kww(i,j) += JxW[qp] * /* convection term */          (-Reynolds*(U*dphi[j][qp])*phi[i][qp] - /* diffusion term  */           (dphi[i][qp]*dphi[j][qp]) - /* Newton term     */           Reynolds*w_z*phi[i][qp]*phi[j][qp]);                    Kuw(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*u_z*phi[i][qp]*phi[j][qp];                    Kvw(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*v_z*phi[i][qp]*phi[j][qp];                    Kwu(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*w_x*phi[i][qp]*phi[j][qp];                    Kwv(i,j) += JxW[qp] * /* Newton term     */      -Reynolds*w_y*phi[i][qp]*phi[j][qp];                  }              }          // Matrix contributions for the up and vp couplings.          if (request_jacobian)            for (unsigned int j=0; j != n_p_dofs; j++)              {                Kup(i,j) += JxW[qp]*psi[j][qp]*dphi[i][qp](0);                Kvp(i,j) += JxW[qp]*psi[j][qp]*dphi[i][qp](1);                if (dim == 3)                  Kwp(i,j) += JxW[qp]*psi[j][qp]*dphi[i][qp](2);              }        }    } // end of the quadrature point qp-loop    return request_jacobian;}bool NavierSystem::element_constraint (bool request_jacobian){  // Here we define some references to cell-specific data that  // will be used to assemble the linear system.  // Element Jacobian * quadrature weight for interior integration  const std::vector<Real> &JxW = fe_velocity->get_JxW();  // The velocity shape function gradients at interior  // quadrature points.  const std::vector<std::vector<RealGradient> >& dphi =    fe_velocity->get_dphi();  // The pressure shape functions at interior  // quadrature points.  const std::vector<std::vector<Real> >& psi = fe_pressure->get_phi();  // The number of local degrees of freedom in each variable  const unsigned int n_u_dofs = dof_indices_var[u_var].size();  const unsigned int n_p_dofs = dof_indices_var[p_var].size();  // The subvectors and submatrices we need to fill:  const unsigned int dim = this->get_mesh().mesh_dimension();

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -