⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vsvd.dat

📁 basic linear algebra classes and applications (SVD,interpolation, multivariate optimization)
💻 DAT
📖 第 1 页 / 共 3 页
字号:
   2 |      19.49     3 |      18.49     4 |      17.49     5 |      16.49     6 |      15.49     7 |      14.49     8 |      13.49     9 |      12.49    10 |      11.49    11 |      3.464    12 |      4.472    13 |      10.49    14 |      5.477    15 |      6.481    16 |      7.483    17 |      8.485    18 |      9.487    19 |      2.449    20 |      1.414  Doneright factor V follows Matrix 1:20x1:20  is not engaged     |        1  |        2  |        3  |        4  |        5  |        6  |-------------------------------------------------------------------------------   1 |         -1            0            0            0            0            0     2 |          0           -1    8.733e-07    3.631e-07    2.226e-07     2.17e-07     3 |          0    9.606e-07            1    4.574e-06   -9.265e-07    2.435e-07     4 |          0   -2.576e-07    5.031e-06           -1    1.709e-06   -7.874e-07     5 |          0    2.822e-07    1.263e-06    1.713e-06            1   -2.022e-06     6 |          0   -2.161e-07    2.623e-07    7.707e-07   -2.071e-06           -1     7 |          0    1.253e-07   -9.179e-08    5.592e-09   -3.293e-07    1.787e-07     8 |          0    6.207e-08    -9.77e-08   -6.128e-08    4.345e-07    1.018e-06     9 |          0    1.075e-07    1.252e-07   -5.056e-08   -1.534e-07    5.333e-07    10 |          0   -1.147e-08    9.892e-09   -8.341e-09    8.645e-08    2.383e-07    11 |          0    1.235e-07    9.021e-08   -1.972e-07   -7.138e-08    2.493e-07    12 |          0     4.29e-08    3.784e-08     4.01e-09    4.182e-08    1.049e-07    13 |          0    1.411e-08    6.802e-08    4.786e-08   -4.339e-08   -4.655e-08    14 |          0    7.549e-09    3.531e-08    7.561e-08    6.757e-08   -5.275e-08    15 |          0    2.235e-09   -5.335e-09   -1.194e-07    1.168e-08    2.061e-07    16 |          0   -3.959e-08    -1.39e-09    -1.57e-08   -7.327e-08    5.843e-09    17 |          0   -7.109e-09   -2.587e-08   -1.794e-08   -3.977e-09    8.712e-08    18 |          0    4.421e-08    1.081e-07   -1.485e-07   -1.527e-07    1.571e-07    19 |          0            0            0            0            0            0    20 |          0            0            0            0            0            0       |        7  |        8  |        9  |       10  |       11  |       12  |-------------------------------------------------------------------------------   1 |          0            0            0            0            0            0     2 |  8.372e-08   -9.309e-08    1.186e-07   -2.382e-08    1.438e-08   -1.895e-08     3 |  2.497e-07    6.421e-09   -1.498e-07   -1.138e-09    -9.71e-08    3.628e-08     4 |  8.699e-08    4.349e-09   -1.606e-09   -6.296e-10   -6.377e-08    4.847e-08     5 |  1.416e-07    4.805e-07    6.316e-08    1.552e-07    2.383e-08   -2.962e-08     6 |  2.541e-07   -9.759e-07    6.023e-07   -2.318e-07    9.485e-08     2.37e-08     7 |          1    5.184e-07   -7.591e-07   -1.321e-07   -4.625e-08   -6.943e-08     8 |   3.69e-07           -1    5.759e-08    9.817e-07   -1.118e-07    6.008e-09     9 |  6.579e-07    7.437e-08            1   -3.081e-07    -6.81e-08   -5.932e-08    10 | -2.191e-07   -9.217e-07   -1.444e-07           -1   -6.705e-08    5.446e-09    11 |  2.392e-07   -4.343e-07   -1.277e-07    2.377e-07   -4.575e-08   -8.325e-08    12 |  4.749e-08    2.203e-07   -3.073e-08   -4.633e-07   -3.498e-08    8.268e-09    13 |  -2.35e-08    8.759e-08   -1.892e-08   -2.106e-07    1.601e-08     7.95e-09    14 |   -3.1e-08    1.872e-07    5.452e-08    4.202e-08   -1.141e-07   -8.244e-08    15 |  6.716e-08   -1.977e-07   -1.687e-08   -4.409e-08   -6.138e-08    2.814e-07    16 |  1.015e-08   -6.073e-09    1.122e-07   -4.952e-08     1.24e-07   -5.649e-07    17 |  1.054e-07   -6.554e-08    7.516e-08   -8.275e-08    9.987e-07            1    18 |  1.382e-07   -3.202e-08    1.087e-07   -1.805e-07            1    -8.85e-07    19 |          0            0            0            0            0            0    20 |          0            0            0            0            0            0       |       13  |       14  |       15  |       16  |       17  |       18  |-------------------------------------------------------------------------------   1 |          0            0            0            0            0            0     2 |  9.101e-08    2.642e-08    1.238e-08    8.276e-09    4.795e-09    -3.74e-08     3 | -7.475e-08    2.302e-08   -9.278e-09   -4.053e-08   -5.093e-08     2.96e-08     4 | -1.164e-07   -1.122e-07    5.952e-08    2.598e-08    1.008e-08    1.171e-08     5 |   6.31e-08    1.399e-08    1.713e-08   -6.629e-08    3.286e-08    1.453e-08     6 |  7.262e-08     2.28e-08   -9.427e-08   -9.596e-09   -2.287e-08   -8.782e-08     7 | -2.033e-07   -5.151e-08    3.428e-08    2.055e-08    6.664e-08    4.036e-08     8 | -3.465e-07   -1.261e-08      2.3e-07    1.227e-07   -5.424e-08   -1.082e-07     9 |  4.946e-08    5.458e-08    -6.14e-08    6.928e-09    9.743e-08   -6.766e-08    10 |   2.56e-07    6.695e-08    3.678e-08     1.97e-08   -1.303e-07     3.79e-07    11 |          1   -4.445e-08   -2.748e-08   -1.376e-07    4.027e-08   -2.889e-07    12 | -4.329e-07    2.456e-09   -3.241e-08   -1.383e-08    3.099e-07           -1    13 | -1.472e-07    2.693e-07   -2.565e-07    1.077e-07            1    9.315e-08    14 |   8.94e-08   -6.006e-08    5.375e-07            1   -1.792e-07    1.449e-07    15 |  1.638e-07    4.652e-07           -1    6.158e-07   -2.732e-07    5.461e-08    16 | -4.486e-09           -1   -5.555e-07   -1.692e-07      2.7e-07     -1.2e-07    17 |  3.161e-08   -8.017e-07     2.84e-07    1.869e-07    1.679e-08    4.861e-08    18 |   7.57e-08    8.651e-08   -1.568e-07    7.022e-09   -5.411e-08     -5.8e-08    19 |          0            0            0            0            0            0    20 |          0            0            0            0            0            0       |       19  |       20  |-------------------------------------------------------------------------------   1 |          0            0     2 |          0            0     3 |          0            0     4 |          0            0     5 |          0            0     6 |          0            0     7 |          0            0     8 |          0            0     9 |          0            0    10 |          0            0    11 |          0            0    12 |          0            0    13 |          0            0    14 |          0            0    15 |          0            0    16 |          0            0    17 |          0            0    18 |          0            0    19 |         -1            0    20 |          0           -1  Done	checking that U is orthogonal indeed, i.e., U'U=E and UU'=ETwo (4,4) elements of matrices with values 0.999999 and 1differ the most, although the deviation 7.15256e-07 is smallTwo (4,4) elements of matrices with values 0.999999 and 1differ the most, although the deviation 7.7486e-07 is small	checking that V is orthogonal indeed, i.e., V'V=E and VV'=ETwo (4,4) elements of matrices with values 1 and 1differ the most, although the deviation 7.15256e-07 is smallTwo (4,4) elements of matrices with values 1 and 1differ the most, although the deviation 7.15256e-07 is small	checking that U*Sig*V' is indeed AComparison of two Matrices:	Original A and composed USigV'Matrix 1:21x1:20  is not engagedMatrix 1:21x1:20  is not engagedMaximal discrepancy    		1.33514e-05   occured at the point		(3,3) Matrix 1 element is    		18 Matrix 2 element is    		18 Absolute error v2[i]-v1[i]		1.33514e-05 Relative error				7.41746e-07||Matrix 1||   			420||Matrix 2||   			420||Matrix1-Matrix2||				0.00037723||Matrix1-Matrix2||/sqrt(||Matrix1|| ||Matrix2||)	8.98168e-07DoneTest by W. Meier <wmeier@manu.com> to catch an obscure bug in QRexpect singular values to be1.4666e-024   1.828427   3.828427   4.366725  7.932951SVD-decompose matrix A and check if we can compose it backoriginal matrix follows Matrix 1:5x1:5  is not engaged     |        1  |        2  |        3  |        4  |        5  |-------------------------------------------------------------------------------   1 |          1            2            0            0            0     2 |          0            2            3            0            0     3 |          0            0            0            4            0     4 |          0            0            0            4            5     5 |          0            0            0            0            5  Doneleft factor U follows Matrix 1:5x1:5  is not engaged     |        1  |        2  |        3  |        4  |        5  |-------------------------------------------------------------------------------   1 |  2.047e-08       0.9239       0.3827            0            0     2 | -8.403e-09      -0.3827       0.9239            0            0     3 |     0.5774   -1.278e-08            0       0.7692       0.2738     4 |    -0.5774    1.278e-08            0       0.1475       0.8031     5 |     0.5774   -1.278e-08            0      -0.6217       0.5293  DoneVector of Singular values follows Matrix 1:5x1:1  is not engaged     |        1  |-------------------------------------------------------------------------------   1 |  1.413e-08     2 |      1.828     3 |      3.828     4 |      4.367     5 |      7.933  Doneright factor V follows Matrix 1:5x1:5  is not engaged     |        1  |        2  |        3  |        4  |        5  |-------------------------------------------------------------------------------   1 |     0.8571       0.5053      0.09996            0            0     2 |    -0.4286        0.592       0.6826            0            0     3 |     0.2857      -0.6279        0.724            0            0     4 |          0            0            0       0.8398        0.543     5 |          0            0            0       -0.543       0.8398  Done	checking that U is orthogonal indeed, i.e., U'U=E and UU'=ETwo (2,2) elements of matrices with values 1 and 1differ the most, although the deviation 1.19209e-07 is smallTwo (2,2) elements of matrices with values 1 and 1differ the most, although the deviation 1.19209e-07 is small	checking that V is orthogonal indeed, i.e., V'V=E and VV'=ETwo (2,2) elements of matrices with values 1 and 1differ the most, although the deviation 1.19209e-07 is smallTwo (3,3) elements of matrices with values 1 and 1differ the most, although the deviation 1.19209e-07 is small	checking that U*Sig*V' is indeed AComparison of two Matrices:	Original A and composed USigV'Matrix 1:5x1:5  is not engagedMatrix 1:5x1:5  is not engagedMaximal discrepancy    		2.38419e-07   occured at the point		(2,3) Matrix 1 element is    		3 Matrix 2 element is    		3 Absolute error v2[i]-v1[i]		2.38419e-07 Relative error				7.94729e-08||Matrix 1||   			26||Matrix 2||   			26||Matrix1-Matrix2||				7.43272e-07||Matrix1-Matrix2||/sqrt(||Matrix1|| ||Matrix2||)	2.85874e-08DoneCompilation finished at Fri Dec 25 23:22:46

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -