⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vsvd.dat

📁 basic linear algebra classes and applications (SVD,interpolation, multivariate optimization)
💻 DAT
📖 第 1 页 / 共 3 页
字号:
./vsvdTesting Singular Value Decompositions of rectangular matricesRotated by PI/2 Matrix Diag(1,4,9)SVD-decompose matrix A and check if we can compose it backoriginal matrix follows Matrix 1:3x1:3  is not engaged     |        1  |        2  |        3  |-------------------------------------------------------------------------------   1 |          0           -4            0     2 |          1            0            0     3 |          0            0            9  Doneleft factor U follows Matrix 1:3x1:3  is not engaged     |        1  |        2  |        3  |-------------------------------------------------------------------------------   1 |          0           -1            0     2 |          1            0            0     3 |          0            0           -1  DoneVector of Singular values follows Matrix 1:3x1:1  is not engaged     |        1  |-------------------------------------------------------------------------------   1 |          1     2 |          4     3 |          9  Doneright factor V follows Matrix 1:3x1:3  is not engaged     |        1  |        2  |        3  |-------------------------------------------------------------------------------   1 |          1            0            0     2 |          0            1            0     3 |          0            0           -1  Done	checking that U is orthogonal indeed, i.e., U'U=E and UU'=E	checking that V is orthogonal indeed, i.e., V'V=E and VV'=E	checking that U*Sig*V' is indeed AComparison of two Matrices:	Original A and composed USigV'Matrix 1:3x1:3  is not engagedMatrix 1:3x1:3  is not engagedMaximal discrepancy    		0   occured at the point		(1,1) Matrix 1 element is    		0 Matrix 2 element is    		0 Absolute error v2[i]-v1[i]		0 Relative error				0||Matrix 1||   			14||Matrix 2||   			14||Matrix1-Matrix2||				0||Matrix1-Matrix2||/sqrt(||Matrix1|| ||Matrix2||)	0DoneExample from the Forsythe, Malcolm, Moler's bookSVD-decompose matrix A and check if we can compose it backoriginal matrix follows Matrix 1:5x1:3  is not engaged     |        1  |        2  |        3  |-------------------------------------------------------------------------------   1 |          1            6           11     2 |          2            7           12     3 |          3            8           13     4 |          4            9           14     5 |          5           10           15  Doneleft factor U follows Matrix 1:5x1:5  is not engaged     |        1  |        2  |        3  |        4  |        5  |-------------------------------------------------------------------------------   1 |    -0.3546      -0.6887       0.6166       0.1053      0.09335     2 |    -0.3987      -0.3756       -0.719       0.0332       0.4266     3 |    -0.4428     -0.06242      -0.1225      -0.6264      -0.6266     4 |     -0.487       0.2507     -0.06442        0.732         -0.4     5 |    -0.5311       0.5638       0.2893      -0.2441       0.5066  DoneVector of Singular values follows Matrix 1:3x1:1  is not engaged     |        1  |-------------------------------------------------------------------------------   1 |      35.13     2 |      2.465     3 |  9.384e-07  Doneright factor V follows Matrix 1:3x1:3  is not engaged     |        1  |        2  |        3  |-------------------------------------------------------------------------------   1 |    -0.2017       0.8903       0.4082     2 |    -0.5168       0.2573      -0.8165     3 |     -0.832      -0.3757       0.4082  Done	checking that U is orthogonal indeed, i.e., U'U=E and UU'=ETwo (3,3) elements of matrices with values 1 and 1differ the most, although the deviation 3.57628e-07 is smallTwo (1,1) elements of matrices with values 1 and 1differ the most, although the deviation 2.98023e-07 is small	checking that V is orthogonal indeed, i.e., V'V=E and VV'=ETwo (3,3) elements of matrices with values 1 and 1differ the most, although the deviation 2.38419e-07 is smallTwo (2,2) elements of matrices with values 1 and 1differ the most, although the deviation 2.38419e-07 is small	checking that U*Sig*V' is indeed AComparison of two Matrices:	Original A and composed USigV'Matrix 1:5x1:3  is not engagedMatrix 1:5x1:3  is not engagedMaximal discrepancy    		2.86102e-06   occured at the point		(3,3) Matrix 1 element is    		13 Matrix 2 element is    		13 Absolute error v2[i]-v1[i]		2.86102e-06 Relative error				2.20079e-07||Matrix 1||   			120||Matrix 2||   			120||Matrix1-Matrix2||				1.75238e-05||Matrix1-Matrix2||/sqrt(||Matrix1|| ||Matrix2||)	1.46031e-07DoneExample from the Wilkinson, Reinsch's bookSingular numbers are 0, 19.5959, 20, 0, 35.3270SVD-decompose matrix A and check if we can compose it backoriginal matrix follows Matrix 1:8x1:5  is not engaged     |        1  |        2  |        3  |        4  |        5  |-------------------------------------------------------------------------------   1 |         22           10            2            3            7     2 |         14            7           10            0            8     3 |         -1           13           -1          -11            3     4 |         -3           -2           13           -2            4     5 |          9            8            1           -2            4     6 |          9            1           -7            5           -1     7 |          2           -6            6            5            1     8 |          4            5            0           -2            2  Doneleft factor U follows Matrix 1:8x1:8  is not engaged     |        1  |        2  |        3  |        4  |        5  |        6  |-------------------------------------------------------------------------------   1 |    -0.7071     -0.03947      -0.1581      -0.1768      -0.6103      -0.2525     2 |    -0.5303     -0.06776      -0.1581       0.3536       0.6684      -0.2045     3 |    -0.1768       0.5427       0.7906       0.1768     -0.04694     -0.06163     4 |  1.311e-08      0.01841      -0.1581       0.7071      -0.3594       0.4664     5 |    -0.3536      -0.2384       0.1581   -1.454e-06       0.1153       0.6245     6 |    -0.1768       0.4018      -0.1581      -0.5303       0.1656       0.5169     7 |  1.508e-08       0.6851      -0.4743       0.1768      0.03423     -0.09679     8 |    -0.1768      -0.1064       0.1581   -1.467e-06      0.08647     -0.08057       |        7  |        8  |-------------------------------------------------------------------------------   1 |   -0.02099     -0.07445     2 |    -0.2291      -0.1517     3 |   -0.03788      -0.1029     4 |    -0.3412       0.1073     5 |     0.6179     -0.08938     6 |    -0.4479      0.07655     7 |     0.4963       0.1322     8 |    0.02121       0.9581  DoneVector of Singular values follows Matrix 1:5x1:1  is not engaged     |        1  |-------------------------------------------------------------------------------   1 |      35.33     2 |   1.68e-06     3 |         20     4 |       19.6     5 |  9.104e-07  Doneright factor V follows Matrix 1:5x1:5  is not engaged     |        1  |        2  |        3  |        4  |        5  |-------------------------------------------------------------------------------   1 |    -0.8006       0.4191      -0.3162      -0.2887            0     2 |    -0.4804      -0.4405       0.6325   -5.918e-06      -0.4185     3 |    -0.1601        0.052      -0.3162        0.866      -0.3488     4 | -1.965e-08      -0.6761      -0.6325      -0.2887      -0.2442     5 |    -0.3203       -0.413    2.661e-06       0.2887       0.8022  Done	checking that U is orthogonal indeed, i.e., U'U=E and UU'=ETwo (1,1) elements of matrices with values 1 and 1differ the most, although the deviation 2.38419e-07 is smallTwo (1,1) elements of matrices with values 1 and 1differ the most, although the deviation 3.57628e-07 is small	checking that V is orthogonal indeed, i.e., V'V=E and VV'=E

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -