⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qsort.c

📁 一个C源代码分析器
💻 C
字号:
/* Copyright (C) 1991, 1992 Free Software Foundation, Inc.This file is part of the GNU C Library.Written by Douglas C. Schmidt (schmidt@ics.uci.edu).The GNU C Library is free software; you can redistribute it and/ormodify it under the terms of the GNU Library General Public License aspublished by the Free Software Foundation; either version 2 of theLicense, or (at your option) any later version.The GNU C Library is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNULibrary General Public License for more details.You should have received a copy of the GNU Library General PublicLicense along with the GNU C Library; see the file COPYING.LIB.  Ifnot, write to the Free Software Foundation, Inc., 675 Mass Ave,Cambridge, MA 02139, USA.  */#include <ansidecl.h>#include <stdlib.h>#include <string.h>/* Byte-wise swap two items of size SIZE. */#define SWAP(a, b, size)						      \  do									      \    {									      \      register size_t __size = (size);					      \      register char *__a = (a), *__b = (b);				      \      do								      \	{								      \	  char __tmp = *__a;						      \	  *__a++ = *__b;						      \	  *__b++ = __tmp;						      \	} while (--__size > 0);						      \    } while (0)/* Discontinue quicksort algorithm when partition gets below this size.   This particular magic number was chosen to work best on a Sun 4/260. */#define MAX_THRESH 4/* Stack node declarations used to store unfulfilled partition obligations. */typedef struct   {    char *lo;    char *hi;  } stack_node;/* The next 4 #defines implement a very fast in-line stack abstraction. */#define STACK_SIZE	(8 * sizeof(unsigned long int))#define PUSH(low, high)	((void) ((top->lo = (low)), (top->hi = (high)), ++top))#define	POP(low, high)	((void) (--top, (low = top->lo), (high = top->hi)))#define	STACK_NOT_EMPTY	(stack < top)                /* Order size using quicksort.  This implementation incorporates   four optimizations discussed in Sedgewick:   1. Non-recursive, using an explicit stack of pointer that store the       next array partition to sort.  To save time, this maximum amount       of space required to store an array of MAX_INT is allocated on the       stack.  Assuming a 32-bit integer, this needs only 32 *       sizeof(stack_node) == 136 bits.  Pretty cheap, actually.   2. Chose the pivot element using a median-of-three decision tree.      This reduces the probability of selecting a bad pivot value and       eliminates certain extraneous comparisons.   3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving      insertion sort to order the MAX_THRESH items within each partition.        This is a big win, since insertion sort is faster for small, mostly      sorted array segements.   4. The larger of the two sub-partitions is always pushed onto the      stack first, with the algorithm then concentrating on the      smaller partition.  This *guarantees* no more than log (n)      stack size is needed (actually O(1) in this case)!  */voidDEFUN(_quicksort, (pbase, total_elems, size, cmp),      PTR CONST pbase AND size_t total_elems AND size_t size AND      int EXFUN((*cmp), (CONST PTR, CONST PTR))){  register char *base_ptr = (char *) pbase;  /* Allocating SIZE bytes for a pivot buffer facilitates a better     algorithm below since we can do comparisons directly on the pivot. */  char *pivot_buffer = (char *) __alloca (size);  CONST size_t max_thresh = MAX_THRESH * size;  if (total_elems == 0)    /* Avoid lossage with unsigned arithmetic below.  */    return;  if (total_elems > MAX_THRESH)    {      char *lo = base_ptr;      char *hi = &lo[size * (total_elems - 1)];      /* Largest size needed for 32-bit int!!! */      stack_node stack[STACK_SIZE];      stack_node *top = stack + 1;      while (STACK_NOT_EMPTY)        {          char *left_ptr;          char *right_ptr;	  char *pivot = pivot_buffer;	  /* Select median value from among LO, MID, and HI. Rearrange	     LO and HI so the three values are sorted. This lowers the 	     probability of picking a pathological pivot value and 	     skips a comparison for both the LEFT_PTR and RIGHT_PTR. */	  char *mid = lo + size * ((hi - lo) / size >> 1);	  if ((*cmp)((PTR) mid, (PTR) lo) < 0)	    SWAP(mid, lo, size);	  if ((*cmp)((PTR) hi, (PTR) mid) < 0)	    SWAP(mid, hi, size);	  else 	    goto jump_over;	  if ((*cmp)((PTR) mid, (PTR) lo) < 0)	    SWAP(mid, lo, size);	jump_over:;	  memcpy(pivot, mid, size);	  pivot = pivot_buffer;	  left_ptr  = lo + size;	  right_ptr = hi - size; 	  /* Here's the famous ``collapse the walls'' section of quicksort.  	     Gotta like those tight inner loops!  They are the main reason 	     that this algorithm runs much faster than others. */	  do 	    {	      while ((*cmp)((PTR) left_ptr, (PTR) pivot) < 0)		left_ptr += size;	      while ((*cmp)((PTR) pivot, (PTR) right_ptr) < 0)		right_ptr -= size;	      if (left_ptr < right_ptr) 		{		  SWAP(left_ptr, right_ptr, size);		  left_ptr += size;		  right_ptr -= size;		}	      else if (left_ptr == right_ptr) 		{		  left_ptr += size;		  right_ptr -= size;		  break;		}	    } 	  while (left_ptr <= right_ptr);          /* Set up pointers for next iteration.  First determine whether             left and right partitions are below the threshold size.  If so,              ignore one or both.  Otherwise, push the larger partition's             bounds on the stack and continue sorting the smaller one. */          if ((size_t) (right_ptr - lo) <= max_thresh)            {              if ((size_t) (hi - left_ptr) <= max_thresh)		/* Ignore both small partitions. */                POP(lo, hi);               else		/* Ignore small left partition. */                  lo = left_ptr;            }          else if ((size_t) (hi - left_ptr) <= max_thresh)	    /* Ignore small right partition. */            hi = right_ptr;          else if ((right_ptr - lo) > (hi - left_ptr))            {                   	      /* Push larger left partition indices. */              PUSH(lo, right_ptr);              lo = left_ptr;            }          else            {                   	      /* Push larger right partition indices. */              PUSH(left_ptr, hi);              hi = right_ptr;            }        }    }  /* Once the BASE_PTR array is partially sorted by quicksort the rest     is completely sorted using insertion sort, since this is efficient      for partitions below MAX_THRESH size. BASE_PTR points to the beginning      of the array to sort, and END_PTR points at the very last element in     the array (*not* one beyond it!). */#define min(x, y) ((x) < (y) ? (x) : (y))  {    char *CONST end_ptr = &base_ptr[size * (total_elems - 1)];    char *tmp_ptr = base_ptr;    char *thresh = min(end_ptr, base_ptr + max_thresh);    register char *run_ptr;    /* Find smallest element in first threshold and place it at the       array's beginning.  This is the smallest array element,       and the operation speeds up insertion sort's inner loop. */    for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)      if ((*cmp)((PTR) run_ptr, (PTR) tmp_ptr) < 0)        tmp_ptr = run_ptr;    if (tmp_ptr != base_ptr)      SWAP(tmp_ptr, base_ptr, size);    /* Insertion sort, running from left-hand-side up to right-hand-side.  */    run_ptr = base_ptr + size;    while ((run_ptr += size) <= end_ptr)      {	tmp_ptr = run_ptr - size;	while ((*cmp)((PTR) run_ptr, (PTR) tmp_ptr) < 0)	  tmp_ptr -= size;	tmp_ptr += size;        if (tmp_ptr != run_ptr)          {            char *trav;	    trav = run_ptr + size;	    while (--trav >= run_ptr)              {                char c = *trav;                char *hi, *lo;                for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)                  *hi = *lo;                *hi = c;              }          }      }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -