⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mul_n.c

📁 一个C源代码分析器
💻 C
字号:
/* __mpn_mul_n -- Multiply two natural numbers of length n.Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.This file is part of the GNU MP Library.The GNU MP Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Library General Public License as published bythe Free Software Foundation; either version 2 of the License, or (at youroption) any later version.The GNU MP Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General PublicLicense for more details.You should have received a copy of the GNU Library General Public Licensealong with the GNU MP Library; see the file COPYING.LIB.  If not, write tothe Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include "gmp.h"#include "gmp-impl.h"/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),   both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are   always stored.  Return the most significant limb.   Argument constraints:   1. PRODP != UP and PRODP != VP, i.e. the destination      must be distinct from the multiplier and the multiplicand.  *//* If KARATSUBA_THRESHOLD is not already defined, define it to a   value which is good on most machines.  */#ifndef KARATSUBA_THRESHOLD#define KARATSUBA_THRESHOLD 32#endif/* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */#if KARATSUBA_THRESHOLD < 2#undef KARATSUBA_THRESHOLD#define KARATSUBA_THRESHOLD 2#endifvoid#if __STDC______mpn_mul_n (mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_ptr);#else____mpn_mul_n ();#endif/* Handle simple cases with traditional multiplication.   This is the most critical code of multiplication.  All multiplies rely   on this, both small and huge.  Small ones arrive here immediately.  Huge   ones arrive here as this is the base case for Karatsuba's recursive   algorithm below.  */void#if __STDC______mpn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)#else____mpn_mul_n_basecase (prodp, up, vp, size)     mp_ptr prodp;     mp_srcptr up;     mp_srcptr vp;     mp_size_t size;#endif{  mp_size_t i;  mp_limb cy_limb;  mp_limb v_limb;  /* Multiply by the first limb in V separately, as the result can be     stored (not added) to PROD.  We also avoid a loop for zeroing.  */  v_limb = vp[0];  if (v_limb <= 1)    {      if (v_limb == 1)	MPN_COPY (prodp, up, size);      else	MPN_ZERO (prodp, size);      cy_limb = 0;    }  else    cy_limb = __mpn_mul_1 (prodp, up, size, v_limb);  prodp[size] = cy_limb;  prodp++;  /* For each iteration in the outer loop, multiply one limb from     U with one limb from V, and add it to PROD.  */  for (i = 1; i < size; i++)    {      v_limb = vp[i];      if (v_limb <= 1)	{	  cy_limb = 0;	  if (v_limb == 1)	    cy_limb = __mpn_add_n (prodp, prodp, up, size);	}      else	cy_limb = __mpn_addmul_1 (prodp, up, size, v_limb);      prodp[size] = cy_limb;      prodp++;    }}void#if __STDC______mpn_mul_n (mp_ptr prodp,	     mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)#else____mpn_mul_n (prodp, up, vp, size, tspace)     mp_ptr prodp;     mp_srcptr up;     mp_srcptr vp;     mp_size_t size;     mp_ptr tspace;#endif{  if ((size & 1) != 0)    {      /* The size is odd, the code code below doesn't handle that.	 Multiply the least significant (size - 1) limbs with a recursive	 call, and handle the most significant limb of S1 and S2	 separately.  */      /* A slightly faster way to do this would be to make the Karatsuba	 code below behave as if the size were even, and let it check for	 odd size in the end.  I.e., in essence move this code to the end.	 Doing so would save us a recursive call, and potentially make the	 stack grow a lot less.  */      mp_size_t esize = size - 1;	/* even size */      mp_limb cy_limb;      MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);      cy_limb = __mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);      prodp[esize + esize] = cy_limb;      cy_limb = __mpn_addmul_1 (prodp + esize, vp, size, up[esize]);      prodp[esize + size] = cy_limb;    }  else    {      /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.	 Split U in two pieces, U1 and U0, such that	 U = U0 + U1*(B**n),	 and V in V1 and V0, such that	 V = V0 + V1*(B**n).	 UV is then computed recursively using the identity		2n   n          n                     n	 UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V			1 1        1  0   0  1              0 0	 Where B = 2**BITS_PER_MP_LIMB.  */      mp_size_t hsize = size >> 1;      mp_limb cy;      int negflg;      /*** Product H.	 ________________  ________________			|_____U1 x V1____||____U0 x V0_____|  */      /* Put result in upper part of PROD and pass low part of TSPACE	 as new TSPACE.  */      MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);      /*** Product M.	 ________________			|_(U1-U0)(V0-V1)_|  */      if (__mpn_cmp (up + hsize, up, hsize) >= 0)	{	  __mpn_sub_n (prodp, up + hsize, up, hsize);	  negflg = 0;	}      else	{	  __mpn_sub_n (prodp, up, up + hsize, hsize);	  negflg = 1;	}      if (__mpn_cmp (vp + hsize, vp, hsize) >= 0)	{	  __mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);	  negflg ^= 1;	}      else	{	  __mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);	  /* No change of NEGFLG.  */	}      /* Read temporary operands from low part of PROD.	 Put result in low part of TSPACE using upper part of TSPACE	 as new TSPACE.  */      MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);      /*** Add/copy product H.  */      MPN_COPY (prodp + hsize, prodp + size, hsize);      cy = __mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);      /*** Add product M (if NEGFLG M is a negative number).  */      if (negflg)	cy -= __mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);      else	cy += __mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);      /*** Product L.	 ________________  ________________			|________________||____U0 x V0_____|  */      /* Read temporary operands from low part of PROD.	 Put result in low part of TSPACE using upper part of TSPACE	 as new TSPACE.  */      MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);      /*** Add/copy Product L (twice).  */      cy += __mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);      if (cy)	{	  if (cy > 0)	    __mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);	  else	    {	      __mpn_sub_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);	      abort ();	    }	}      MPN_COPY (prodp, tspace, hsize);      cy = __mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);      if (cy)	__mpn_add_1 (prodp + size, prodp + size, size, 1);    }}void#if __STDC______mpn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size)#else____mpn_sqr_n_basecase (prodp, up, size)     mp_ptr prodp;     mp_srcptr up;     mp_size_t size;#endif{  mp_size_t i;  mp_limb cy_limb;  mp_limb v_limb;  /* Multiply by the first limb in V separately, as the result can be     stored (not added) to PROD.  We also avoid a loop for zeroing.  */  v_limb = up[0];  if (v_limb <= 1)    {      if (v_limb == 1)	MPN_COPY (prodp, up, size);      else	MPN_ZERO (prodp, size);      cy_limb = 0;    }  else    cy_limb = __mpn_mul_1 (prodp, up, size, v_limb);  prodp[size] = cy_limb;  prodp++;  /* For each iteration in the outer loop, multiply one limb from     U with one limb from V, and add it to PROD.  */  for (i = 1; i < size; i++)    {      v_limb = up[i];      if (v_limb <= 1)	{	  cy_limb = 0;	  if (v_limb == 1)	    cy_limb = __mpn_add_n (prodp, prodp, up, size);	}      else	cy_limb = __mpn_addmul_1 (prodp, up, size, v_limb);      prodp[size] = cy_limb;      prodp++;    }}void#if __STDC______mpn_sqr_n (mp_ptr prodp,	     mp_srcptr up, mp_size_t size, mp_ptr tspace)#else____mpn_sqr_n (prodp, up, size, tspace)     mp_ptr prodp;     mp_srcptr up;     mp_size_t size;     mp_ptr tspace;#endif{  if ((size & 1) != 0)    {      /* The size is odd, the code code below doesn't handle that.	 Multiply the least significant (size - 1) limbs with a recursive	 call, and handle the most significant limb of S1 and S2	 separately.  */      /* A slightly faster way to do this would be to make the Karatsuba	 code below behave as if the size were even, and let it check for	 odd size in the end.  I.e., in essence move this code to the end.	 Doing so would save us a recursive call, and potentially make the	 stack grow a lot less.  */      mp_size_t esize = size - 1;	/* even size */      mp_limb cy_limb;      MPN_SQR_N_RECURSE (prodp, up, esize, tspace);      cy_limb = __mpn_addmul_1 (prodp + esize, up, esize, up[esize]);      prodp[esize + esize] = cy_limb;      cy_limb = __mpn_addmul_1 (prodp + esize, up, size, up[esize]);      prodp[esize + size] = cy_limb;    }  else    {      mp_size_t hsize = size >> 1;      mp_limb cy;      /*** Product H.	 ________________  ________________			|_____U1 x U1____||____U0 x U0_____|  */      /* Put result in upper part of PROD and pass low part of TSPACE	 as new TSPACE.  */      MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace);      /*** Product M.	 ________________			|_(U1-U0)(U0-U1)_|  */      if (__mpn_cmp (up + hsize, up, hsize) >= 0)	{	  __mpn_sub_n (prodp, up + hsize, up, hsize);	}      else	{	  __mpn_sub_n (prodp, up, up + hsize, hsize);	}      /* Read temporary operands from low part of PROD.	 Put result in low part of TSPACE using upper part of TSPACE	 as new TSPACE.  */      MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size);      /*** Add/copy product H.  */      MPN_COPY (prodp + hsize, prodp + size, hsize);      cy = __mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);      /*** Add product M (if NEGFLG M is a negative number).  */      cy -= __mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);      /*** Product L.	 ________________  ________________			|________________||____U0 x U0_____|  */      /* Read temporary operands from low part of PROD.	 Put result in low part of TSPACE using upper part of TSPACE	 as new TSPACE.  */      MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);      /*** Add/copy Product L (twice).  */      cy += __mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);      if (cy)	{	  if (cy > 0)	    __mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);	  else	    {	      __mpn_sub_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);	      abort ();	    }	}      MPN_COPY (prodp, tspace, hsize);      cy = __mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);      if (cy)	__mpn_add_1 (prodp + size, prodp + size, size, 1);    }}/* This should be made into an inline function in gmp.h.  */inline void#if __STDC____mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)#else__mpn_mul_n (prodp, up, vp, size)     mp_ptr prodp;     mp_srcptr up;     mp_srcptr vp;     mp_size_t size;#endif{  if (up == vp)    {      if (size < KARATSUBA_THRESHOLD)	{	  ____mpn_sqr_n_basecase (prodp, up, size);	}      else	{	  mp_ptr tspace;	  tspace = (mp_ptr) alloca (2 * size * BYTES_PER_MP_LIMB);	  ____mpn_sqr_n (prodp, up, size, tspace);	}    }  else    {      if (size < KARATSUBA_THRESHOLD)	{	  ____mpn_mul_n_basecase (prodp, up, vp, size);	}      else	{	  mp_ptr tspace;	  tspace = (mp_ptr) alloca (2 * size * BYTES_PER_MP_LIMB);	  ____mpn_mul_n (prodp, up, vp, size, tspace);	}    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -