⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 log.c

📁 一个C源代码分析器
💻 C
字号:
/* * Copyright (c) 1992, 1993 *	The Regents of the University of California.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *	This product includes software developed by the University of *	California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */#ifndef lintstatic char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";#endif /* not lint */#include <math.h>#include <errno.h>#include "mathimpl.h"/* Table-driven natural logarithm. * * This code was derived, with minor modifications, from: *	Peter Tang, "Table-Driven Implementation of the *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans. *	Math Software, vol 16. no 4, pp 378-400, Dec 1990). * * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256, * where F = j/128 for j an integer in [0, 128]. * * log(2^m) = log2_hi*m + log2_tail*m * since m is an integer, the dominant term is exact. * m has at most 10 digits (for subnormal numbers), * and log2_hi has 11 trailing zero bits. * * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h * logF_hi[] + 512 is exact. * * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ... * the leading term is calculated to extra precision in two * parts, the larger of which adds exactly to the dominant * m and F terms. * There are two cases: *	1. when m, j are non-zero (m | j), use absolute *	   precision for the leading term. *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1). *	   In this case, use a relative precision of 24 bits. * (This is done differently in the original paper) * * Special cases: *	0	return signalling -Inf *	neg	return signalling NaN *	+Inf	return +Inf*/#if defined(vax) || defined(tahoe)#define _IEEE		0#define TRUNC(x)	x = (double) (float) (x)#else#define _IEEE		1#define endian		(((*(int *) &one)) ? 1 : 0)#define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000#define infnan(x)	0.0#endif#define N 128/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128. * Used for generation of extend precision logarithms. * The constant 35184372088832 is 2^45, so the divide is exact. * It ensures correct reading of logF_head, even for inaccurate * decimal-to-binary conversion routines.  (Everybody gets the * right answer for integers less than 2^53.) * Values for log(F) were generated using error < 10^-57 absolute * with the bc -l package.*/static double	A1 = 	  .08333333333333178827;static double	A2 = 	  .01250000000377174923;static double	A3 =	 .002232139987919447809;static double	A4 =	.0004348877777076145742;static double logF_head[N+1] = {	0.,	.007782140442060381246,	.015504186535963526694,	.023167059281547608406,	.030771658666765233647,	.038318864302141264488,	.045809536031242714670,	.053244514518837604555,	.060624621816486978786,	.067950661908525944454,	.075223421237524235039,	.082443669210988446138,	.089612158689760690322,	.096729626458454731618,	.103796793681567578460,	.110814366340264314203,	.117783035656430001836,	.124703478501032805070,	.131576357788617315236,	.138402322859292326029,	.145182009844575077295,	.151916042025732167530,	.158605030176659056451,	.165249572895390883786,	.171850256926518341060,	.178407657472689606947,	.184922338493834104156,	.191394852999565046047,	.197825743329758552135,	.204215541428766300668,	.210564769107350002741,	.216873938300523150246,	.223143551314024080056,	.229374101064877322642,	.235566071312860003672,	.241719936886966024758,	.247836163904594286577,	.253915209980732470285,	.259957524436686071567,	.265963548496984003577,	.271933715484010463114,	.277868451003087102435,	.283768173130738432519,	.289633292582948342896,	.295464212893421063199,	.301261330578199704177,	.307025035294827830512,	.312755710004239517729,	.318453731118097493890,	.324119468654316733591,	.329753286372579168528,	.335355541920762334484,	.340926586970454081892,	.346466767346100823488,	.351976423156884266063,	.357455888922231679316,	.362905493689140712376,	.368325561158599157352,	.373716409793814818840,	.379078352934811846353,	.384411698910298582632,	.389716751140440464951,	.394993808240542421117,	.400243164127459749579,	.405465108107819105498,	.410659924985338875558,	.415827895143593195825,	.420969294644237379543,	.426084395310681429691,	.431173464818130014464,	.436236766774527495726,	.441274560805140936281,	.446287102628048160113,	.451274644139630254358,	.456237433481874177232,	.461175715122408291790,	.466089729924533457960,	.470979715219073113985,	.475845904869856894947,	.480688529345570714212,	.485507815781602403149,	.490303988045525329653,	.495077266798034543171,	.499827869556611403822,	.504556010751912253908,	.509261901790523552335,	.513945751101346104405,	.518607764208354637958,	.523248143765158602036,	.527867089620485785417,	.532464798869114019908,	.537041465897345915436,	.541597282432121573947,	.546132437597407260909,	.550647117952394182793,	.555141507540611200965,	.559615787935399566777,	.564070138285387656651,	.568504735352689749561,	.572919753562018740922,	.577315365035246941260,	.581691739635061821900,	.586049045003164792433,	.590387446602107957005,	.594707107746216934174,	.599008189645246602594,	.603290851438941899687,	.607555250224322662688,	.611801541106615331955,	.616029877215623855590,	.620240409751204424537,	.624433288012369303032,	.628608659422752680256,	.632766669570628437213,	.636907462236194987781,	.641031179420679109171,	.645137961373620782978,	.649227946625615004450,	.653301272011958644725,	.657358072709030238911,	.661398482245203922502,	.665422632544505177065,	.669430653942981734871,	.673422675212350441142,	.677398823590920073911,	.681359224807238206267,	.685304003098281100392,	.689233281238557538017,	.693147180560117703862};static double logF_tail[N+1] = {	0.,	-.00000000000000543229938420049,	 .00000000000000172745674997061,	-.00000000000001323017818229233,	-.00000000000001154527628289872,	-.00000000000000466529469958300,	 .00000000000005148849572685810,	-.00000000000002532168943117445,	-.00000000000005213620639136504,	-.00000000000001819506003016881,	 .00000000000006329065958724544,	 .00000000000008614512936087814,	-.00000000000007355770219435028,	 .00000000000009638067658552277,	 .00000000000007598636597194141,	 .00000000000002579999128306990,	-.00000000000004654729747598444,	-.00000000000007556920687451336,	 .00000000000010195735223708472,	-.00000000000017319034406422306,	-.00000000000007718001336828098,	 .00000000000010980754099855238,	-.00000000000002047235780046195,	-.00000000000008372091099235912,	 .00000000000014088127937111135,	 .00000000000012869017157588257,	 .00000000000017788850778198106,	 .00000000000006440856150696891,	 .00000000000016132822667240822,	-.00000000000007540916511956188,	-.00000000000000036507188831790,	 .00000000000009120937249914984,	 .00000000000018567570959796010,	-.00000000000003149265065191483,	-.00000000000009309459495196889,	 .00000000000017914338601329117,	-.00000000000001302979717330866,	 .00000000000023097385217586939,	 .00000000000023999540484211737,	 .00000000000015393776174455408,	-.00000000000036870428315837678,	 .00000000000036920375082080089,	-.00000000000009383417223663699,	 .00000000000009433398189512690,	 .00000000000041481318704258568,	-.00000000000003792316480209314,	 .00000000000008403156304792424,	-.00000000000034262934348285429,	 .00000000000043712191957429145,	-.00000000000010475750058776541,	-.00000000000011118671389559323,	 .00000000000037549577257259853,	 .00000000000013912841212197565,	 .00000000000010775743037572640,	 .00000000000029391859187648000,	-.00000000000042790509060060774,	 .00000000000022774076114039555,	 .00000000000010849569622967912,	-.00000000000023073801945705758,	 .00000000000015761203773969435,	 .00000000000003345710269544082,	-.00000000000041525158063436123,	 .00000000000032655698896907146,	-.00000000000044704265010452446,	 .00000000000034527647952039772,	-.00000000000007048962392109746,	 .00000000000011776978751369214,	-.00000000000010774341461609578,	 .00000000000021863343293215910,	 .00000000000024132639491333131,	 .00000000000039057462209830700,	-.00000000000026570679203560751,	 .00000000000037135141919592021,	-.00000000000017166921336082431,	-.00000000000028658285157914353,	-.00000000000023812542263446809,	 .00000000000006576659768580062,	-.00000000000028210143846181267,	 .00000000000010701931762114254,	 .00000000000018119346366441110,	 .00000000000009840465278232627,	-.00000000000033149150282752542,	-.00000000000018302857356041668,	-.00000000000016207400156744949,	 .00000000000048303314949553201,	-.00000000000071560553172382115,	 .00000000000088821239518571855,	-.00000000000030900580513238244,	-.00000000000061076551972851496,	 .00000000000035659969663347830,	 .00000000000035782396591276383,	-.00000000000046226087001544578,	 .00000000000062279762917225156,	 .00000000000072838947272065741,	 .00000000000026809646615211673,	-.00000000000010960825046059278,	 .00000000000002311949383800537,	-.00000000000058469058005299247,	-.00000000000002103748251144494,	-.00000000000023323182945587408,	-.00000000000042333694288141916,	-.00000000000043933937969737844,	 .00000000000041341647073835565,	 .00000000000006841763641591466,	 .00000000000047585534004430641,	 .00000000000083679678674757695,	-.00000000000085763734646658640,	 .00000000000021913281229340092,	-.00000000000062242842536431148,	-.00000000000010983594325438430,	 .00000000000065310431377633651,	-.00000000000047580199021710769,	-.00000000000037854251265457040,	 .00000000000040939233218678664,	 .00000000000087424383914858291,	 .00000000000025218188456842882,	-.00000000000003608131360422557,	-.00000000000050518555924280902,	 .00000000000078699403323355317,	-.00000000000067020876961949060,	 .00000000000016108575753932458,	 .00000000000058527188436251509,	-.00000000000035246757297904791,	-.00000000000018372084495629058,	 .00000000000088606689813494916,	 .00000000000066486268071468700,	 .00000000000063831615170646519,	 .00000000000025144230728376072,	-.00000000000017239444525614834};double#ifdef _ANSI_SOURCElog(double x)#elselog(x) double x;#endif{	int m, j;	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;	volatile double u1;	/* Catch special cases */	if (x <= 0)		if (_IEEE && x == zero)	/* log(0) = -Inf */			return (-one/zero);		else if (_IEEE)		/* log(neg) = NaN */			return (zero/zero);		else if (x == zero)	/* NOT REACHED IF _IEEE */			return (infnan(-ERANGE));		else			return (infnan(EDOM));	else if (!finite(x))		if (_IEEE)		/* x = NaN, Inf */			return (x+x);		else			return (infnan(ERANGE));		/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/	/* y = F*(1 + f/F) for |f| <= 2^-8		*/	m = logb(x);	g = ldexp(x, -m);	if (_IEEE && m == -1022) {		j = logb(g), m += j;		g = ldexp(g, -j);	}	j = N*(g-1) + .5;	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */	f = g - F;	/* Approximate expansion for log(1+f/F) ~= u + q */	g = 1/(2*F+f);	u = 2*f*g;	v = u*u;	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));    /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,     * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.     *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750    */	if (m | j)		u1 = u + 513, u1 -= 513;    /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;     * 		u1 = u to 24 bits.    */	else		u1 = u, TRUNC(u1);	u2 = (2.0*(f - F*u1) - u1*f) * g;			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/	/* log(x) = log(2^m*F*(1+f/F)) =				*/	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/	/* (exact) + (tiny)						*/	u1 += m*logF_head[N] + logF_head[j];		/* exact */	u2 = (u2 + logF_tail[j]) + q;			/* tiny */	u2 += logF_tail[N]*m;	return (u1 + u2);}/* * Extra precision variant, returning struct {double a, b;}; * log(x) = a+b to 63 bits, with a is rounded to 26 bits. */struct Double#ifdef _ANSI_SOURCE__log__D(double x)#else__log__D(x) double x;#endif{	int m, j;	double F, f, g, q, u, v, u2, one = 1.0;	volatile double u1;	struct Double r;	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/	/* y = F*(1 + f/F) for |f| <= 2^-8		*/	m = logb(x);	g = ldexp(x, -m);	if (_IEEE && m == -1022) {		j = logb(g), m += j;		g = ldexp(g, -j);	}	j = N*(g-1) + .5;	F = (1.0/N) * j + 1;	f = g - F;	g = 1/(2*F+f);	u = 2*f*g;	v = u*u;	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));	if (m | j)		u1 = u + 513, u1 -= 513;	else		u1 = u, TRUNC(u1);	u2 = (2.0*(f - F*u1) - u1*f) * g;	u1 += m*logF_head[N] + logF_head[j];	u2 +=  logF_tail[j]; u2 += q;	u2 += logF_tail[N]*m;	r.a = u1 + u2;			/* Only difference is here */	TRUNC(r.a);	r.b = (u1 - r.a) + u2;	return (r);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -