⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 divmod.c

📁 一个C源代码分析器
💻 C
字号:
/* __mpn_divmod -- Divide natural numbers, producing both remainder and   quotient.Copyright (C) 1993, 1994 Free Software Foundation, Inc.This file is part of the GNU MP Library.The GNU MP Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Library General Public License as published bythe Free Software Foundation; either version 2 of the License, or (at youroption) any later version.The GNU MP Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General PublicLicense for more details.You should have received a copy of the GNU Library General Public Licensealong with the GNU MP Library; see the file COPYING.LIB.  If not, write tothe Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include "gmp.h"#include "gmp-impl.h"#include "longlong.h"/* Divide num (NUM_PTR/NUM_SIZE) by den (DEN_PTR/DEN_SIZE) and write   the NUM_SIZE-DEN_SIZE least significant quotient limbs at QUOT_PTR   and the DEN_SIZE long remainder at NUM_PTR.   Return the most significant limb of the quotient, this is always 0 or 1.   Argument constraints:   1. The most significant bit of the divisor must be set.   2. QUOT_PTR must either not overlap with the input operands at all, or      QUOT_PTR + DEN_SIZE >= NUM_PTR must hold true.  (This means that it's      possible to put the quotient in the high part of NUM, right after the      remainder in NUM.  */mp_limb#if __STDC____mpn_divmod (mp_ptr quot_ptr,	      mp_ptr num_ptr, mp_size_t num_size,	      mp_srcptr den_ptr, mp_size_t den_size)#else__mpn_divmod (quot_ptr, num_ptr, num_size, den_ptr, den_size)     mp_ptr quot_ptr;     mp_ptr num_ptr;     mp_size_t num_size;     mp_srcptr den_ptr;     mp_size_t den_size;#endif{  mp_limb most_significant_q_limb = 0;  switch (den_size)    {    case 0:      /* We are asked to divide by zero, so go ahead and do it!  (To make	 the compiler not remove this statement, return the value.)  */      return 1 / den_size;    case 1:      {	mp_size_t i;	mp_limb n1, n0;	mp_limb d;	d = den_ptr[0];	n1 = num_ptr[num_size - 1];	if (n1 >= d)	  {	    most_significant_q_limb = 1;	    n1 -= d;	  }	for (i = num_size - 2; i >= 0; i--)	  {	    n0 = num_ptr[i];	    udiv_qrnnd (quot_ptr[i], n1, n1, n0, d);	  }	num_ptr[0] = n1;      }      break;    case 2:      {	mp_size_t i;	mp_limb n1, n0, n2;	mp_limb d1, d0;	num_ptr += num_size - 2;	d1 = den_ptr[1];	d0 = den_ptr[0];	n1 = num_ptr[1];	n0 = num_ptr[0];	if (n1 >= d1 && (n1 > d1 || n0 >= d0))	  {	    most_significant_q_limb = 1;	    sub_ddmmss (n1, n0, n1, n0, d1, d0);	  }	for (i = num_size - den_size - 1; i >= 0; i--)	  {	    mp_limb q;	    mp_limb r;	    num_ptr--;	    if (n1 == d1)	      {		/* Q should be either 111..111 or 111..110.  Need special		   treatment of this rare case as normal division would		   give overflow.  */		q = ~(mp_limb) 0;		r = n0 + d1;		if (r < d1)	/* Carry in the addition? */		  {		    add_ssaaaa (n1, n0, r - d0, num_ptr[0], 0, d0);		    quot_ptr[i] = q;		    continue;		  }		n1 = d0 - (d0 != 0);		n0 = -d0;	      }	    else	      {		udiv_qrnnd (q, r, n1, n0, d1);		umul_ppmm (n1, n0, d0, q);	      }	    n2 = num_ptr[0];	  q_test:	    if (n1 > r || (n1 == r && n0 > n2))	      {		/* The estimated Q was too large.  */		q--;		sub_ddmmss (n1, n0, n1, n0, 0, d0);		r += d1;		if (r >= d1)	/* If not carry, test Q again.  */		  goto q_test;	      }	    quot_ptr[i] = q;	    sub_ddmmss (n1, n0, r, n2, n1, n0);	  }	num_ptr[1] = n1;	num_ptr[0] = n0;      }      break;    default:      {	mp_size_t i;	mp_limb dX, d1, n0;	num_ptr += num_size;	den_ptr += den_size;	dX = den_ptr[-1];	d1 = den_ptr[-2];	n0 = num_ptr[-1];	if (n0 >= dX)	  {	    if (n0 > dX		|| __mpn_cmp (num_ptr - den_size, den_ptr - den_size,			      den_size - 1) >= 0)	      {		__mpn_sub_n (num_ptr - den_size,			     num_ptr - den_size, den_ptr - den_size,			     den_size);		most_significant_q_limb = 1;	      }	    n0 = num_ptr[-1];	  }	for (i = num_size - den_size - 1; i >= 0; i--)	  {	    mp_limb q;	    mp_limb n1;	    mp_limb cy_limb;	    num_ptr--;	    if (n0 == dX)	      /* This might over-estimate q, but it's probably not worth		 the extra code here to find out.  */	      q = ~(mp_limb) 0;	    else	      {		mp_limb r;		udiv_qrnnd (q, r, n0, num_ptr[-1], dX);		umul_ppmm (n1, n0, d1, q);		while (n1 > r || (n1 == r && n0 > num_ptr[-2]))		  {		    q--;		    r += dX;		    if (r < dX)	/* I.e. "carry in previous addition?"  */		      break;		    n1 -= n0 < d1;		    n0 -= d1;		  }	      }	    /* Possible optimization: We already have (q * n0) and (1 * n1)	       after the calculation of q.  Taking advantage of that, we	       could make this loop make two iterations less.  */	    cy_limb = __mpn_submul_1 (num_ptr - den_size,				      den_ptr - den_size, den_size, q);	    if (num_ptr[0] != cy_limb)	      {		mp_limb cy;		cy = __mpn_add_n (num_ptr - den_size,				  num_ptr - den_size,				  den_ptr - den_size, den_size);		if (cy == 0)		  abort ();		q--;	      }	    quot_ptr[i] = q;	    n0 = num_ptr[-1];	  }      }    }  return most_significant_q_limb;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -