📄 gim_geometry.h
字号:
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 1.0; \
}\
/*! initialize matrix */
#define ZERO_MATRIX_4X4(m) \
{ \
m[0][0] = 0.0; \
m[0][1] = 0.0; \
m[0][2] = 0.0; \
m[0][3] = 0.0; \
\
m[1][0] = 0.0; \
m[1][1] = 0.0; \
m[1][2] = 0.0; \
m[1][3] = 0.0; \
\
m[2][0] = 0.0; \
m[2][1] = 0.0; \
m[2][2] = 0.0; \
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 0.0; \
}\
/*! matrix rotation X */
#define ROTX_CS(m,cosine,sine) \
{ \
/* rotation about the x-axis */ \
\
m[0][0] = 1.0; \
m[0][1] = 0.0; \
m[0][2] = 0.0; \
m[0][3] = 0.0; \
\
m[1][0] = 0.0; \
m[1][1] = (cosine); \
m[1][2] = (sine); \
m[1][3] = 0.0; \
\
m[2][0] = 0.0; \
m[2][1] = -(sine); \
m[2][2] = (cosine); \
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 1.0; \
}\
/*! matrix rotation Y */
#define ROTY_CS(m,cosine,sine) \
{ \
/* rotation about the y-axis */ \
\
m[0][0] = (cosine); \
m[0][1] = 0.0; \
m[0][2] = -(sine); \
m[0][3] = 0.0; \
\
m[1][0] = 0.0; \
m[1][1] = 1.0; \
m[1][2] = 0.0; \
m[1][3] = 0.0; \
\
m[2][0] = (sine); \
m[2][1] = 0.0; \
m[2][2] = (cosine); \
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 1.0; \
}\
/*! matrix rotation Z */
#define ROTZ_CS(m,cosine,sine) \
{ \
/* rotation about the z-axis */ \
\
m[0][0] = (cosine); \
m[0][1] = (sine); \
m[0][2] = 0.0; \
m[0][3] = 0.0; \
\
m[1][0] = -(sine); \
m[1][1] = (cosine); \
m[1][2] = 0.0; \
m[1][3] = 0.0; \
\
m[2][0] = 0.0; \
m[2][1] = 0.0; \
m[2][2] = 1.0; \
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 1.0; \
}\
/*! matrix copy */
#define COPY_MATRIX_2X2(b,a) \
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[0][1]; \
\
b[1][0] = a[1][0]; \
b[1][1] = a[1][1]; \
\
}\
/*! matrix copy */
#define COPY_MATRIX_2X3(b,a) \
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[0][1]; \
b[0][2] = a[0][2]; \
\
b[1][0] = a[1][0]; \
b[1][1] = a[1][1]; \
b[1][2] = a[1][2]; \
}\
/*! matrix copy */
#define COPY_MATRIX_3X3(b,a) \
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[0][1]; \
b[0][2] = a[0][2]; \
\
b[1][0] = a[1][0]; \
b[1][1] = a[1][1]; \
b[1][2] = a[1][2]; \
\
b[2][0] = a[2][0]; \
b[2][1] = a[2][1]; \
b[2][2] = a[2][2]; \
}\
/*! matrix copy */
#define COPY_MATRIX_4X4(b,a) \
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[0][1]; \
b[0][2] = a[0][2]; \
b[0][3] = a[0][3]; \
\
b[1][0] = a[1][0]; \
b[1][1] = a[1][1]; \
b[1][2] = a[1][2]; \
b[1][3] = a[1][3]; \
\
b[2][0] = a[2][0]; \
b[2][1] = a[2][1]; \
b[2][2] = a[2][2]; \
b[2][3] = a[2][3]; \
\
b[3][0] = a[3][0]; \
b[3][1] = a[3][1]; \
b[3][2] = a[3][2]; \
b[3][3] = a[3][3]; \
}\
/*! matrix transpose */
#define TRANSPOSE_MATRIX_2X2(b,a) \
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[1][0]; \
\
b[1][0] = a[0][1]; \
b[1][1] = a[1][1]; \
}\
/*! matrix transpose */
#define TRANSPOSE_MATRIX_3X3(b,a) \
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[1][0]; \
b[0][2] = a[2][0]; \
\
b[1][0] = a[0][1]; \
b[1][1] = a[1][1]; \
b[1][2] = a[2][1]; \
\
b[2][0] = a[0][2]; \
b[2][1] = a[1][2]; \
b[2][2] = a[2][2]; \
}\
/*! matrix transpose */
#define TRANSPOSE_MATRIX_4X4(b,a) \
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[1][0]; \
b[0][2] = a[2][0]; \
b[0][3] = a[3][0]; \
\
b[1][0] = a[0][1]; \
b[1][1] = a[1][1]; \
b[1][2] = a[2][1]; \
b[1][3] = a[3][1]; \
\
b[2][0] = a[0][2]; \
b[2][1] = a[1][2]; \
b[2][2] = a[2][2]; \
b[2][3] = a[3][2]; \
\
b[3][0] = a[0][3]; \
b[3][1] = a[1][3]; \
b[3][2] = a[2][3]; \
b[3][3] = a[3][3]; \
}\
/*! multiply matrix by scalar */
#define SCALE_MATRIX_2X2(b,s,a) \
{ \
b[0][0] = (s) * a[0][0]; \
b[0][1] = (s) * a[0][1]; \
\
b[1][0] = (s) * a[1][0]; \
b[1][1] = (s) * a[1][1]; \
}\
/*! multiply matrix by scalar */
#define SCALE_MATRIX_3X3(b,s,a) \
{ \
b[0][0] = (s) * a[0][0]; \
b[0][1] = (s) * a[0][1]; \
b[0][2] = (s) * a[0][2]; \
\
b[1][0] = (s) * a[1][0]; \
b[1][1] = (s) * a[1][1]; \
b[1][2] = (s) * a[1][2]; \
\
b[2][0] = (s) * a[2][0]; \
b[2][1] = (s) * a[2][1]; \
b[2][2] = (s) * a[2][2]; \
}\
/*! multiply matrix by scalar */
#define SCALE_MATRIX_4X4(b,s,a) \
{ \
b[0][0] = (s) * a[0][0]; \
b[0][1] = (s) * a[0][1]; \
b[0][2] = (s) * a[0][2]; \
b[0][3] = (s) * a[0][3]; \
\
b[1][0] = (s) * a[1][0]; \
b[1][1] = (s) * a[1][1]; \
b[1][2] = (s) * a[1][2]; \
b[1][3] = (s) * a[1][3]; \
\
b[2][0] = (s) * a[2][0]; \
b[2][1] = (s) * a[2][1]; \
b[2][2] = (s) * a[2][2]; \
b[2][3] = (s) * a[2][3]; \
\
b[3][0] = s * a[3][0]; \
b[3][1] = s * a[3][1]; \
b[3][2] = s * a[3][2]; \
b[3][3] = s * a[3][3]; \
}\
/*! multiply matrix by scalar */
#define ACCUM_SCALE_MATRIX_2X2(b,s,a) \
{ \
b[0][0] += (s) * a[0][0]; \
b[0][1] += (s) * a[0][1]; \
\
b[1][0] += (s) * a[1][0]; \
b[1][1] += (s) * a[1][1]; \
}\
/*! multiply matrix by scalar */
#define ACCUM_SCALE_MATRIX_3X3(b,s,a) \
{ \
b[0][0] += (s) * a[0][0]; \
b[0][1] += (s) * a[0][1]; \
b[0][2] += (s) * a[0][2]; \
\
b[1][0] += (s) * a[1][0]; \
b[1][1] += (s) * a[1][1]; \
b[1][2] += (s) * a[1][2]; \
\
b[2][0] += (s) * a[2][0]; \
b[2][1] += (s) * a[2][1]; \
b[2][2] += (s) * a[2][2]; \
}\
/*! multiply matrix by scalar */
#define ACCUM_SCALE_MATRIX_4X4(b,s,a) \
{ \
b[0][0] += (s) * a[0][0]; \
b[0][1] += (s) * a[0][1]; \
b[0][2] += (s) * a[0][2]; \
b[0][3] += (s) * a[0][3]; \
\
b[1][0] += (s) * a[1][0]; \
b[1][1] += (s) * a[1][1]; \
b[1][2] += (s) * a[1][2]; \
b[1][3] += (s) * a[1][3]; \
\
b[2][0] += (s) * a[2][0]; \
b[2][1] += (s) * a[2][1]; \
b[2][2] += (s) * a[2][2]; \
b[2][3] += (s) * a[2][3]; \
\
b[3][0] += (s) * a[3][0]; \
b[3][1] += (s) * a[3][1]; \
b[3][2] += (s) * a[3][2]; \
b[3][3] += (s) * a[3][3]; \
}\
/*! matrix product */
/*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
#define MATRIX_PRODUCT_2X2(c,a,b) \
{ \
c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]; \
c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]; \
\
c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]; \
c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]; \
\
}\
/*! matrix product */
/*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
#define MATRIX_PRODUCT_3X3(c,a,b) \
{ \
c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]; \
c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]; \
c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]; \
\
c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]; \
c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]; \
c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]; \
\
c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]; \
c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]; \
c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]; \
}\
/*! matrix product */
/*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
#define MATRIX_PRODUCT_4X4(c,a,b) \
{ \
c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]+a[0][3]*b[3][0];\
c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]+a[0][3]*b[3][1];\
c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]+a[0][3]*b[3][2];\
c[0][3] = a[0][0]*b[0][3]+a[0][1]*b[1][3]+a[0][2]*b[2][3]+a[0][3]*b[3][3];\
\
c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]+a[1][3]*b[3][0];\
c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]+a[1][3]*b[3][1];\
c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]+a[1][3]*b[3][2];\
c[1][3] = a[1][0]*b[0][3]+a[1][1]*b[1][3]+a[1][2]*b[2][3]+a[1][3]*b[3][3];\
\
c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]+a[2][3]*b[3][0];\
c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]+a[2][3]*b[3][1];\
c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]+a[2][3]*b[3][2];\
c[2][3] = a[2][0]*b[0][3]+a[2][1]*b[1][3]+a[2][2]*b[2][3]+a[2][3]*b[3][3];\
\
c[3][0] = a[3][0]*b[0][0]+a[3][1]*b[1][0]+a[3][2]*b[2][0]+a[3][3]*b[3][0];\
c[3][1] = a[3][0]*b[0][1]+a[3][1]*b[1][1]+a[3][2]*b[2][1]+a[3][3]*b[3][1];\
c[3][2] = a[3][0]*b[0][2]+a[3][1]*b[1][2]+a[3][2]*b[2][2]+a[3][3]*b[3][2];\
c[3][3] = a[3][0]*b[0][3]+a[3][1]*b[1][3]+a[3][2]*b[2][3]+a[3][3]*b[3][3];\
}\
/*! matrix times vector */
#define MAT_DOT_VEC_2X2(p,m,v) \
{ \
p[0] = m[0][0]*v[0] + m[0][1]*v[1]; \
p[1] = m[1][0]*v[0] + m[1][1]*v[1]; \
}\
/*! matrix times vector */
#define MAT_DOT_VEC_3X3(p,m,v) \
{ \
p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2]; \
p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2]; \
p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2]; \
}\
/*! matrix times vector
v is a vec4f
*/
#define MAT_DOT_VEC_4X4(p,m,v) \
{ \
p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]*v[3]; \
p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]*v[3]; \
p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]*v[3]; \
p[3] = m[3][0]*v[0] + m[3][1]*v[1] + m[3][2]*v[2] + m[3][3]*v[3]; \
}\
/*! matrix times vector
v is a vec3f
and m is a mat4f<br>
Last column is added as the position
*/
#define MAT_DOT_VEC_3X4(p,m,v) \
{ \
p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]; \
p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]; \
p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]; \
}\
/*! vector transpose times matrix */
/*! p[j] = v[0]*m[0][j] + v[1]*m[1][j] + v[2]*m[2][j]; */
#define VEC_DOT_MAT_3X3(p,v,m) \
{ \
p[0] = v[0]*m[0][0] + v[1]*m[1][0] + v[2]*m[2][0]; \
p[1] = v[0]*m[0][1] + v[1]*m[1][1] + v[2]*m[2][1]; \
p[2] = v[0]*m[0][2] + v[1]*m[1][2] + v[2]*m[2][2]; \
}\
/*! affine matrix times vector */
/** The matrix is assumed to be an affine matrix, with last two
* entries representing a translation */
#define MAT_DOT_VEC_2X3(p,m,v) \
{ \
p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]; \
p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]; \
}\
/** inverse transpose of matrix times vector
*
* This macro computes inverse transpose of matrix m,
* and multiplies vector v into it, to yeild vector p
*
* DANGER !!! Do Not use this on normal vectors!!!
* It will leave normals the wrong length !!!
* See macro below for use on normals.
*/
#define INV_TRANSP_MAT_DOT_VEC_2X2(p,m,v) \
{ \
GREAL det; \
\
det = m[0][0]*m[1][1] - m[0][1]*m[1][0]; \
p[0] = m[1][1]*v[0] - m[1][0]*v[1]; \
p[1] = - m[0][1]*v[0] + m[0][0]*v[1]; \
\
/* if matrix not singular, and not orthonormal, then renormalize */ \
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -