⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 siftrefinemx.c

📁 sift MATLAB+VC Image Fusion,MATLAB和VC混合编程
💻 C
字号:
/* file:        siftrefinemx.c** author:      Andrea Vedaldi** description: Subpixel localization, thresholding and off-edge test.**//* AUTORIGHTSCopyright (c) 2006 The Regents of the University of California.All Rights Reserved.Created by Andrea VedaldiUCLA Vision Lab - Department of Computer SciencePermission to use, copy, modify, and distribute this software and itsdocumentation for educational, research and non-profit purposes,without fee, and without a written agreement is hereby granted,provided that the above copyright notice, this paragraph and thefollowing three paragraphs appear in all copies.This software program and documentation are copyrighted by The Regentsof the University of California. The software program anddocumentation are supplied "as is", without any accompanying servicesfrom The Regents. The Regents does not warrant that the operation ofthe program will be uninterrupted or error-free. The end-userunderstands that the program was developed for research purposes andis advised not to rely exclusively on the program for any reason.This software embodies a method for which the following patent hasbeen issued: "Method and apparatus for identifying scale invariantfeatures in an image and use of same for locating an object in animage," David G. Lowe, US Patent 6,711,293 (March 23,2004). Provisional application filed March 8, 1999. Asignee: TheUniversity of British Columbia.IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTYFOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE ANDITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEENADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OFCALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOTLIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FORA PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS"BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDEMAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.*/#include"mex.h"#include<mexutils.c>#include<stdlib.h>#include<string.h>#ifdef WINDOWS#undef min#undef max#ifndef __cplusplus__#define sqrtf(x) ((float)sqrt((double)x)#define powf(x)  ((float)pow((double)x)#define fabsf(x) ((float)fabs((double)x)#endif#endif#define greater(a,b) ((a) > (b))#define min(a,b)     (((a)<(b))?(a):(b))#define max(a,b)     (((a)>(b))?(a):(b))#define abs(a)       (((a)>0)?(a):(-a))const int max_iter = 5 ;voidmexFunction(int nout, mxArray *out[],             int nin, const mxArray *in[]){  int M,N,S,smin,K ;  const int* dimensions ;  const double* P_pt ;  const double* D_pt ;   double threshold = 0.01 ; /*0.02 ;*/  double r = 10.0 ;  double* result ;  enum {IN_P=0,IN_D,IN_SMIN,IN_THRESHOLD,IN_R} ;  enum {OUT_Q=0} ;	  /* -----------------------------------------------------------------  **                                               Check the arguments  ** -------------------------------------------------------------- */   if (nin < 3) {    mexErrMsgTxt("At least three input arguments required.");  } else if (nout > 1) {    mexErrMsgTxt("Too many output arguments.");  }    if( !uIsRealMatrix(in[IN_P],3,-1) ) {    mexErrMsgTxt("P must be a 3xK real matrix") ;  }  if( !mxIsDouble(in[IN_D]) || mxGetNumberOfDimensions(in[IN_D]) != 3) {    mexErrMsgTxt("G must be a three dimensional real array.") ;  }  if( !uIsRealScalar(in[IN_SMIN]) ) {    mexErrMsgTxt("SMIN must be a real scalar.") ;  }  if(nin >= 4) {    if(!uIsRealScalar(in[IN_THRESHOLD])) {      mexErrMsgTxt("THRESHOLD must be a real scalar.") ;    }    threshold = *mxGetPr(in[IN_THRESHOLD]) ;  }    if(nin >= 5) {    if(!uIsRealScalar(in[IN_R])) {      mexErrMsgTxt("R must be a real scalar.") ;    }    r = *mxGetPr(in[IN_R]) ;	  }    dimensions = mxGetDimensions(in[IN_D]) ;  M = dimensions[0] ;  N = dimensions[1] ;  S = dimensions[2] ;   smin = (int)(*mxGetPr(in[IN_SMIN])) ;    if(S < 3 || M < 3 || N < 3) {    mexErrMsgTxt("All dimensions of DOG must be not less than 3.") ;  }    K = mxGetN(in[IN_P]) ;    P_pt = mxGetPr(in[IN_P]) ;  D_pt = mxGetPr(in[IN_D]) ;  /* If the input array is empty, then output an empty array as well. */  if( K == 0) {    out[OUT_Q] = mxDuplicateArray(in[IN_P]) ;    return ;  }  /* -----------------------------------------------------------------   *                                                        Do the job   * -------------------------------------------------------------- */  {        double* buffer = (double*) mxMalloc(K*3*sizeof(double)) ;    double* buffer_iterator = buffer ;    int p ;    const int yo = 1 ;    const int xo = M ;    const int so = M*N ;        for(p = 0 ; p < K ; ++p) {      int x = ((int)*P_pt++) ;      int y = ((int)*P_pt++) ;      int s = ((int)*P_pt++) - smin ;      int iter ;      double b[3] ;            /* Local maxima extracted from the DOG       * have coorrinates 1<=x<=N-2, 1<=y<=M-2       * and 1<=s-mins<=S-2. This is also the range of the points       * that we can refine.       */      if(x < 1 || x > N-2 ||         y < 1 || y > M-2 ||         s < 1 || s > S-2) {        continue ;      }#define at(dx,dy,ds) (*(pt + (dx)*xo + (dy)*yo + (ds)*so))      {        const double* pt = D_pt + y*yo + x*xo + s*so ;              double Dx=0,Dy=0,Ds=0,Dxx=0,Dyy=0,Dss=0,Dxy=0,Dxs=0,Dys=0 ;        int dx = 0 ;        int dy = 0 ;        int j, i, jj, ii ;                for(iter = 0 ; iter < max_iter ; ++iter) {          double A[3*3] ;          #define Aat(i,j) (A[(i)+(j)*3])              x += dx ;          y += dy ;          pt = D_pt + y*yo + x*xo + s*so ;                    /* Compute the gradient. */          Dx = 0.5 * (at(+1,0,0) - at(-1,0,0)) ;          Dy = 0.5 * (at(0,+1,0) - at(0,-1,0));          Ds = 0.5 * (at(0,0,+1) - at(0,0,-1)) ;                    /* Compute the Hessian. */          Dxx = (at(+1,0,0) + at(-1,0,0) - 2.0 * at(0,0,0)) ;          Dyy = (at(0,+1,0) + at(0,-1,0) - 2.0 * at(0,0,0)) ;          Dss = (at(0,0,+1) + at(0,0,-1) - 2.0 * at(0,0,0)) ;                    Dxy = 0.25 * ( at(+1,+1,0) + at(-1,-1,0) - at(-1,+1,0) - at(+1,-1,0) ) ;          Dxs = 0.25 * ( at(+1,0,+1) + at(-1,0,-1) - at(-1,0,+1) - at(+1,0,-1) ) ;          Dys = 0.25 * ( at(0,+1,+1) + at(0,-1,-1) - at(0,-1,+1) - at(0,+1,-1) ) ;                    /* Solve linear system. */          Aat(0,0) = Dxx ;          Aat(1,1) = Dyy ;          Aat(2,2) = Dss ;          Aat(0,1) = Aat(1,0) = Dxy ;          Aat(0,2) = Aat(2,0) = Dxs ;          Aat(1,2) = Aat(2,1) = Dys ;                    b[0] = - Dx ;          b[1] = - Dy ;          b[2] = - Ds ;                    /* Gauss elimination */          for(j = 0 ; j < 3 ; ++j) {                    double maxa    = 0 ;            double maxabsa = 0 ;            int    maxi    = -1 ;            double tmp ;                        /* look for the maximally stable pivot */            for (i = j ; i < 3 ; ++i) {              double a    = Aat (i,j) ;              double absa = abs (a) ;              if (absa > maxabsa) {                maxa    = a ;                maxabsa = absa ;                maxi    = i ;              }            }                        /* if singular give up */            if (maxabsa < 1e-10f) {              b[0] = 0 ;              b[1] = 0 ;              b[2] = 0 ;              break ;            }                        i = maxi ;                        /* swap j-th row with i-th row and normalize j-th row */            for(jj = j ; jj < 3 ; ++jj) {              tmp = Aat(i,jj) ; Aat(i,jj) = Aat(j,jj) ; Aat(j,jj) = tmp ;              Aat(j,jj) /= maxa ;            }            tmp = b[j] ; b[j] = b[i] ; b[i] = tmp ;            b[j] /= maxa ;                        /* elimination */            for (ii = j+1 ; ii < 3 ; ++ii) {              double x = Aat(ii,j) ;              for (jj = j ; jj < 3 ; ++jj) {                Aat(ii,jj) -= x * Aat(j,jj) ;                              }              b[ii] -= x * b[j] ;            }          }                    /* backward substitution */          for (i = 2 ; i > 0 ; --i) {            double x = b[i] ;            for (ii = i-1 ; ii >= 0 ; --ii) {              b[ii] -= x * Aat(ii,i) ;            }          }                    /* If the translation of the keypoint is big, move the keypoint           * and re-iterate the computation. Otherwise we are all set.           */          dx= ((b[0] >  0.6 && x < N-2) ?  1 : 0 )            + ((b[0] < -0.6 && x > 1  ) ? -1 : 0 ) ;                    dy= ((b[1] >  0.6 && y < M-2) ?  1 : 0 )            + ((b[1] < -0.6 && y > 1  ) ? -1 : 0 ) ;                    if( dx == 0 && dy == 0 ) break ;                  }				        {          double val = at(0,0,0) + 0.5 * (Dx * b[0] + Dy * b[1] + Ds * b[2]) ;           double score = (Dxx+Dyy)*(Dxx+Dyy) / (Dxx*Dyy - Dxy*Dxy) ;           double xn = x + b[0] ;          double yn = y + b[1] ;          double sn = s + b[2] ;                    if(fabs(val) > threshold &&             score < (r+1)*(r+1)/r &&              score >= 0 &&             fabs(b[0]) < 1.5 &&             fabs(b[1]) < 1.5 &&             fabs(b[2]) < 1.5 &&             xn >= 0 &&             xn <= N-1 &&             yn >= 0 &&             yn <= M-1 &&             sn >= 0 &&             sn <= S-1) {            *buffer_iterator++ = xn ;            *buffer_iterator++ = yn ;            *buffer_iterator++ = sn+smin  ;          }        }      }    }          /* Copy the result into an array. */    {      int NL = (buffer_iterator - buffer)/3 ;      out[OUT_Q] = mxCreateDoubleMatrix(3, NL, mxREAL) ;      result = mxGetPr(out[OUT_Q]);      memcpy(result, buffer, sizeof(double) * 3 * NL) ;    }    mxFree(buffer) ;  }  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -