📄 multiplediscriminantanalysis.m
字号:
function [patterns, train_targets, w] = MultipleDiscriminantAnalysis(train_patterns, train_targets)
%Reshape the data points using multiple descriminant analysis
%Inputs:
% train_patterns - Input patterns
% train_targets - Input targets
%
%Outputs
% patterns - New patterns
% targets - New targets
% w - Weights vector
[D, N] = size(train_patterns);
Utargets = unique(train_targets);
x = train_patterns;
if (size(train_patterns,1) < length(Utargets)-1),
error('Number of classes must be equal to or smaller than input dimension')
end
%Estimate Sw and Sb
m = mean(x')';
Sw_i = zeros(length(Utargets), D, D);
Sb_i = zeros(length(Utargets), D, D);
for i = 1:length(Utargets),
indices = find(train_targets == Utargets(i));
m_i = mean(x(:,indices)')';
Sw_i(i,:,:) = (x(:, indices) - m_i*ones(1,length(indices)))*(x(:, indices) - m_i*ones(1,length(indices)))';
Sb_i(i,:,:) = length(indices)*(m_i - m)*(m_i - m)';
end
Sw = squeeze(sum(Sw_i));
Sb = squeeze(sum(Sb_i));
[v, d]= eig(Sb, Sw);
w = v(:,1:length(Utargets)-1);
patterns = w'*x;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -