⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lessthancomparable.html

📁 ISO_C++:C++_STL开发文档
💻 HTML
字号:
<HTML><!--  -- Copyright (c) 1996-1999  -- Silicon Graphics Computer Systems, Inc.  --  -- Permission to use, copy, modify, distribute and sell this software  -- and its documentation for any purpose is hereby granted without fee,  -- provided that the above copyright notice appears in all copies and  -- that both that copyright notice and this permission notice appear  -- in supporting documentation.  Silicon Graphics makes no  -- representations about the suitability of this software for any  -- purpose.  It is provided "as is" without express or implied warranty.  --  -- Copyright (c) 1994  -- Hewlett-Packard Company  --  -- Permission to use, copy, modify, distribute and sell this software  -- and its documentation for any purpose is hereby granted without fee,  -- provided that the above copyright notice appears in all copies and  -- that both that copyright notice and this permission notice appear  -- in supporting documentation.  Hewlett-Packard Company makes no  -- representations about the suitability of this software for any  -- purpose.  It is provided "as is" without express or implied warranty.  --  --><Head><Title>LessThan Comparable</Title><!-- Generated by htmldoc --></HEAD><BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b" 	ALINK="#ff0000"> <IMG SRC="CorpID.gif"      ALT="SGI" HEIGHT="43" WIDTH="151"> <!--end header--><BR Clear><H1>LessThan Comparable</H1><Table CellPadding=0 CellSpacing=0 width=100%><TR><TD Align=left><Img src = "utilities.gif" Alt=""   WIDTH = "194"  HEIGHT = "38" ></TD><TD Align=right><Img src = "concept.gif" Alt=""   WIDTH = "194"  HEIGHT = "38" ></TD></TR><TR><TD Align=left VAlign=top><b>Category</b>: utilities</TD><TD Align=right VAlign=top><b>Component type</b>: concept</TD></TR></Table><h3>Description</h3>A type is LessThanComparable if it is ordered: it mustbe possible to compare two objects of that type using <tt>operator&lt;</tt>, and<tt>operator&lt;</tt> must be a partial ordering.<h3>Refinement of</h3><h3>Associated types</h3><h3>Notation</h3><Table><TR><TD VAlign=top><tt>X</tt></TD><TD VAlign=top>A type that is a model of LessThanComparable</TD></TR><TR><TD VAlign=top><tt>x</tt>, <tt>y</tt>, <tt>z</tt></TD><TD VAlign=top>Object of type <tt>X</tt></TD></tr></table><h3>Definitions</h3>Consider the relation <tt>!(x &lt; y) &amp;&amp; !(y &lt; x)</tt>.  If this relation istransitive (that is, if <tt>!(x &lt; y) &amp;&amp; !(y &lt; x) &amp;&amp; !(y &lt; z) &amp;&amp; !(z &lt; y)</tt>implies <tt>!(x &lt; z) &amp;&amp; !(z &lt; x)</tt>), then it satisfies the mathematicaldefinition of an equivalence relation.  In this case, <tt>operator&lt;</tt>is a <i>strict weak ordering</i>.<P>If <tt>operator&lt;</tt> is a strict weak ordering, and if each equivalence classhas only a single element, then <tt>operator&lt;</tt> is a <i>total ordering</i>.<h3>Valid expressions</h3><Table border><TR><TH>Name</TH><TH>Expression</TH><TH>Type requirements</TH><TH>Return type</TH></TR><TR><TD VAlign=top>Less</TD><TD VAlign=top><tt>x &lt; y</tt></TD><TD VAlign=top>&nbsp;</TD><TD VAlign=top>Convertible to <tt>bool</tt></TD></TR><TR><TD VAlign=top>Greater</TD><TD VAlign=top><tt>x &gt; y</tt></TD><TD VAlign=top>&nbsp;</TD><TD VAlign=top>Convertible to <tt>bool</tt></TD></TR><TR><TD VAlign=top>Less or equal</TD><TD VAlign=top><tt>x &lt;= y</tt></TD><TD VAlign=top>&nbsp;</TD><TD VAlign=top>Convertible to <tt>bool</tt></TD></TR><TR><TD VAlign=top>Greater or equal</TD><TD VAlign=top><tt>x &gt;= y</tt></TD><TD VAlign=top>&nbsp;</TD><TD VAlign=top>Convertible to <tt>bool</tt></TD></tr></table><h3>Expression semantics</h3><Table border><TR><TH>Name</TH><TH>Expression</TH><TH>Precondition</TH><TH>Semantics</TH><TH>Postcondition</TH></TR><TR><TD VAlign=top>Less</TD><TD VAlign=top><tt>x &lt; y</tt></TD><TD VAlign=top><tt>x</tt> and <tt>y</tt> are in the domain of <tt>&lt;</tt></TD><TD VAlign=top>&nbsp;</TD><TD VAlign=top>&nbsp;</TD></TR><TR><TD VAlign=top>Greater</TD><TD VAlign=top><tt>x &gt; y</tt></TD><TD VAlign=top><tt>x</tt> and <tt>y</tt> are in the domain of <tt>&lt;</tt></TD><TD VAlign=top>Equivalent to <tt>y &lt; x</tt> <A href="#1">[1]</A></TD><TD VAlign=top>&nbsp;</TD></TR><TR><TD VAlign=top>Less or equal</TD><TD VAlign=top><tt>x &lt;= y</tt></TD><TD VAlign=top><tt>x</tt> and <tt>y</tt> are in the domain of <tt>&lt;</tt></TD><TD VAlign=top>Equivalent to <tt>!(y &lt; x)</tt> <A href="#1">[1]</A></TD><TD VAlign=top>&nbsp;</TD></TR><TR><TD VAlign=top>Greater or equal</TD><TD VAlign=top><tt>x &gt;= y</tt></TD><TD VAlign=top><tt>x</tt> and <tt>y</tt> are in the domain of <tt>&lt;</tt></TD><TD VAlign=top>Equivalent to <tt>!(x &lt; y)</tt> <A href="#1">[1]</A></TD><TD VAlign=top>&nbsp;</TD></tr></table><h3>Complexity guarantees</h3><h3>Invariants</h3><Table border><TR><TD VAlign=top>Irreflexivity</TD><TD VAlign=top><tt>x &lt; x</tt> must be false.</TD></TR><TR><TD VAlign=top>Antisymmetry</TD><TD VAlign=top><tt>x &lt; y</tt> implies !(y &lt; x) <A href="#2">[2]</A></TD></TR><TR><TD VAlign=top>Transitivity</TD><TD VAlign=top><tt>x &lt; y</tt> and <tt>y &lt; z</tt> implies <tt>x &lt; z</tt> <A href="#3">[3]</A></TD></tr></table><h3>Models</h3><UL><LI>int</UL><h3>Notes</h3><P><A name="1">[1]</A>Only <tt>operator&lt;</tt> is fundamental; the other inequality operatorsare essentially syntactic sugar.<P><A name="2">[2]</A>Antisymmetry is a theorem, not an axiom: it follows fromirreflexivity and transitivity.<P><A name="3">[3]</A>Because of irreflexivity and transitivity, <tt>operator&lt;</tt> alwayssatisfies the definition of a <i>partial ordering</i>.  The definition ofa <i>strict weak ordering</i> is stricter, and the definition of a<i>total ordering</i> is stricter still.<h3>See also</h3><A href="EqualityComparable.html">EqualityComparable</A>, <A href="StrictWeakOrdering.html">StrictWeakOrdering</A><!--start footer--> <HR SIZE="6"><A href="http://www.sgi.com/"><IMG SRC="surf.gif" HEIGHT="54" WIDTH="54"         ALT="[Silicon Surf]"></A><A HREF="index.html"><IMG SRC="stl_home.gif"         HEIGHT="54" WIDTH="54" ALT="[STL Home]"></A><BR><FONT SIZE="-2"><A href="http://www.sgi.com/Misc/sgi_info.html" TARGET="_top">Copyright &copy; 1999 Silicon Graphics, Inc.</A> All Rights Reserved.</FONT><FONT SIZE="-3"><a href="http://www.sgi.com/Misc/external.list.html" TARGET="_top">TrademarkInformation</A></FONT><P></BODY></HTML> 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -