📄 particlefilters.cc.svn-base
字号:
time_used = global_timer.elapsed(); } cout << endl; if (time) { cout << "We were able to generate " << gibbs_step << " complete tree-Gibbs samples." << endl; } // Here the Gibbs loop is done. That's all.}template < class Graph, class PositionMap, class WeightMap>typename graph_traits< Graph >::vertex_descriptor forward_filtering_implementation (Graph & g, const typename graph_traits< Graph >::vertex_descriptor root_node, PositionMap & positions, WeightMap & weights){ // Variable declarations typedef typename graph_traits< Graph >::vertex_descriptor VertexDescriptor; ContinuousRandomVariable * current_random_variable; unsigned int current_variable_index, previous_variable_index ; VertexDescriptor double_previous_node, previous_node; VertexDescriptor current_node = VertexDescriptor (); previous_node = root_node; double_previous_node = root_node; typename graph_traits<Graph>::adjacency_iterator u, u_end; ParticleFilterProposal proposal; unsigned int number_particles = get (positions, root_node).size(); initialize_particles (g, get (positions, root_node), get (weights, root_node), root_node, proposal); ContinuousPotential * internal_potential = NULL; ContinuousPotential * observation_potential = NULL; GaussianPotential * interaction_potential = NULL; vector <double> cumulative_distribution (number_particles); vector <double> stratified_weights (number_particles); vector <double> original_particles (number_particles); // We got our initial distribution covered, resample it ?? Currently, NO resampling is performed. // Initialization done. // Beginning of main loop. while (true) { // * We must obtain: // * potential coming from the edges linking the node to the other nodes not in the chain, call that internal_potential (because we arranged it as an internal potential) // * potential between node and observation, call that observation_potential; // * potential between the two nodes, call that interaction potential; for (tie (u, u_end) = adjacent_vertices(previous_node, g); u != u_end; ++u) { if (out_degree(*u,g) != 1) { if ( *u != double_previous_node) { current_node = *u; interaction_potential = static_cast <GaussianPotential *> (g[edge(previous_node, current_node, g).first]); // WARNING HERE: NOT SURE about the legitimacy of the cast, ConstantPotential should inherit both from Continuous and DiscretePotential internal_potential = static_cast <ContinuousPotential *>(g[current_node]->get_potential()); } } } for (tie (u, u_end) = adjacent_vertices(current_node, g); u != u_end; ++u) { if (out_degree(*u,g) == 1) { observation_potential = g[edge(current_node, *u, g).first]; //cout << "Observation node is " << *u << " (" << g[*u]->get_random_variable()->get_index() << ")" << endl; } } //cout << "Current node (FF) is " << g[current_node]->get_random_variable()->get_index() << endl; previous_variable_index = g[previous_node]->get_random_variable()->get_index(); current_random_variable = static_cast<ContinuousRandomVariable *> (g[current_node]->get_random_variable()); current_variable_index = current_random_variable->get_index(); // Sampling particle from proposal vector <double> & current_weights = get (weights, current_node); vector <double> & previous_weights = get (weights, previous_node); vector <double> & current_positions = get (positions, current_node); vector <double> & previous_positions = get (positions, previous_node); vector <double>::iterator previous_particle_position = previous_positions.begin(); vector <double>::iterator previous_particle_weight = previous_weights.begin(); vector <double>::iterator current_particle_weight = current_weights.begin(); //cout << "First weight (before update): " << *current_weights.begin() << endl; proposal.setup_gaussian_proposal(static_cast<ChainedSinglePotential *>(internal_potential), current_variable_index); for (vector <double>::iterator current_particle_position = current_positions.begin(); current_particle_position != current_positions.end(); ++current_particle_position) { // Sampling the new particle // cout << "Particle number " << current_particle_position - current_positions.begin() << endl; interaction_potential->set_variable_value (previous_variable_index, *previous_particle_position); //cout << "Var:" << interaction_potential->get_variance() << endl; proposal.add_gaussian_proposal(*previous_particle_position, interaction_potential->get_variance()); *current_particle_position = proposal.get_proposal_position(*current_random_variable); // This also sets the current_random_variable.last_sampled_value // Compute the new weight observation_potential->set_variable_value (*current_random_variable); // It is the Bernouilli one, last_sampled_value must be set from the particle. done now (hope) interaction_potential->set_variable_value (*current_random_variable); // It is a Gaussian potential // Setting Internal Potential internal_potential->set_variable_value (*current_random_variable); // don't forget to set the internal potential also !! *current_particle_weight = ( *previous_particle_weight * observation_potential->get_potential_value() * interaction_potential->get_potential_value() * internal_potential->get_potential_value() )/ proposal.get_proposal_weight(*current_particle_position); /* if (*current_particle_weight == 0.0) { cout << "New particle, proposal mean, proposal variance: " << *current_particle_position << " , " << proposal.debug_get_gaussian_mean() << " , " << proposal.debug_get_gaussian_variance() << endl; cout << "Observation, interaction, internal, proposal: " << observation_potential->get_potential_value() << " , " << interaction_potential->get_potential_value() << ", " <<internal_potential->get_potential_value() << " , " << proposal.get_proposal_weight(*current_particle_position) << endl; } */ // cout << "Weight of new particle: " << *current_particle_weight << endl; ++previous_particle_position; ++previous_particle_weight; ++current_particle_weight; } // Normalize the weights /* cout << "Weights: " << endl; for ( vector <double>::iterator it = current_weights.begin(); it != current_weights.end(); ++it ) { cout << *it << endl; } cout << "done" << endl << endl << endl; vector <double> test_weights = get (weights, current_node); for ( vector <double>::iterator it = test_weights.begin(); it != test_weights.end(); ++it ) { cout << *it << endl; } cout << "done" << endl << endl << endl; */ if ( !fast_double_normalize_over (current_weights.begin(), current_weights.end()) ) { cout << "Weights equal 0.0" << endl; for ( vector <double>::iterator it = current_weights.begin(); it != current_weights.end(); ++it ) { *it = 1.0; } } // Resample part resample ( current_positions, current_weights, cumulative_distribution, stratified_weights, original_particles); // End of one step of the forward pass /* cout << "Particles: " << endl; for ( vector <double>::iterator it = current_positions.begin(); it != current_positions.end(); ++it ) { cout << *it << endl; } */ if ( out_degree(current_node,g) == 2) { // We are finished /* cout << "Particles (at the last step): " << endl; for ( vector <double>::iterator it = current_positions.begin(); it != current_positions.end(); ++it ) { cout << *it << endl; } */ return current_node; } double_previous_node = previous_node; previous_node = current_node; } //delete proposal; }// We are going to try to implement a way of getting more samples in the backward passtemplate < class Graph, class PositionMap , class WeightMap>void backward_smoothing_implementation (Graph & g, const typename graph_traits<Graph>::vertex_descriptor tail_node, PositionMap & positions, WeightMap & weights, const unsigned int number_samples){ typedef typename graph_traits<Graph>::vertex_descriptor VertexDescriptor; VertexDescriptor double_next_node, next_node, current_node; typename graph_traits<Graph>::adjacency_iterator u, u_end; double next_sample_position, current_sample_position; RandomVariable * next_random_variable; RandomVariable * current_random_variable; vector <double> current_new_weights (get (weights, tail_node).size()); for (unsigned int current_sample = 0; current_sample < number_samples; ++current_sample) { next_node = tail_node; double_next_node = tail_node; current_node = tail_node; next_random_variable = g[next_node]->get_random_variable(); current_random_variable = g[current_node]->get_random_variable(); // We sample the tail node variable, note that we could normalize weights there... current_sample_position = static_cast < ContinuousRandomVariable * > (current_random_variable)->sample_from_particles(get (positions, tail_node), get (weights, tail_node)); next_sample_position = current_sample_position; g[current_node]->get_potential()->set_variable_value(* current_random_variable); // set the internal potential GaussianPotential * interaction_potential = NULL; ContinuousPotential * internal_potential = NULL; while (true) { for (tie (u, u_end) = adjacent_vertices(next_node, g); u != u_end; ++u) { if (out_degree(*u,g) != 1) { // FIX_ME: done if (*u != double_next_node) { current_node = *u; interaction_potential = static_cast <GaussianPotential *> (g[edge(next_node, current_node, g).first]); internal_potential = static_cast <ContinuousPotential *> (g[current_node]->get_potential() ); } } } next_random_variable = g[next_node]->get_random_variable(); current_random_variable = g[current_node]->get_random_variable(); unsigned int current_variable_index = current_random_variable->get_index(); //cout << "Current node (BS) is " << current_variable_index << endl; // Here this is the only time we set up the potentials based on the sampled value interaction_potential->set_variable_value(* next_random_variable); vector <double> & current_positions = get (positions, current_node); vector <double> & current_weights = get (weights, current_node); vector <double>::iterator current_particle_weight = current_weights.begin(); vector <double>::iterator current_particle_new_weight = current_new_weights.begin(); for (vector <double>::iterator current_particle_position = current_positions.begin(); current_particle_position != current_positions.end(); ++current_particle_position) { interaction_potential->set_variable_value( current_variable_index, *current_particle_position); //cout << "Updated Weight (previous_weight, interaction_potential): " << *current_particle_weight * interaction_potential->get_potential_value() << " ( " << *current_particle_weight << ", " << interaction_potential->get_potential_value() << " ) " << endl; *current_particle_new_weight = *current_particle_weight * interaction_potential->get_potential_value(); ++current_particle_weight; ++current_particle_new_weight; } /* cout << "Updated Weights: " << endl; for ( vector <double>::iterator it = current_weights.begin(); it != current_weights.end(); ++it ) { cout << *it << endl; } */ // Normalize the weights (CRUCIAL HERE) fast_double_normalize_over (current_new_weights.begin(), current_new_weights.end()); // We now sample the current RV, with respect to the updated weights current_sample_position = static_cast <ContinuousRandomVariable *> (current_random_variable)->sample_from_particles(current_positions, current_new_weights); next_sample_position = current_sample_position; // And we set the internal Potential based on the value obtained internal_potential->set_variable_value(* current_random_variable); static_cast <ContinuousRandomVariable * > (current_random_variable)->set_mean_bw_particles(current_positions, current_new_weights); if ( out_degree(current_node,g) == 2) { // We are finished break; } double_next_node = next_node; next_node = current_node; } } //dynamic_cast< ContinuousRandomVariable *> (g[vertex(0,g)]->get_random_variable())->debug_display_state();}template < class Graph, class PositionType, class ParticleFilterProposalType >void initialize_particles (Graph & g, vector <PositionType> & initial_positions, vector <double> & initial_weights, typename graph_traits<Graph>::vertex_descriptor root_node, ParticleFilterProposalType & proposal){ typedef typename graph_traits<Graph>::vertex_descriptor VertexDescriptor;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -