📄 particlefilters.cc.svn-base
字号:
if ( *u != double_previous_node) { current_node = *u; interaction_potential = g[ edge(previous_node, current_node, g).first]; internal_potential = static_cast < DiscretePotential *> (g[current_node]->get_potential() ); } } } for (tie (u, u_end) = adjacent_vertices(current_node, g); u != u_end; ++u) { if (out_degree(*u,g) == 1) { observation_potential = g[edge(current_node, *u, g).first]; } } //cout << "Current node is " << current_node << " (" << g[current_node]->get_random_variable()->get_index() << ")" << ", previous was " << previous_node << " (" << g[previous_node]->get_random_variable()->get_index() << ")" << endl; //cout << "Current node (FF) is " << g[current_node]->get_random_variable()->get_index() << endl; //previous_variable_index = g[previous_node]->get_random_variable()->get_index(); current_random_variable = g[current_node]->get_random_variable(); previous_random_variable = g[previous_node]->get_random_variable(); current_variable_index = current_random_variable->get_index(); // Sampling particle from proposal vector <double> & current_weights = get (weights, current_node); vector <double> & previous_weights = get (weights, previous_node); vector <unsigned int> & current_positions = get (positions, current_node); vector <unsigned int> & previous_positions = get (positions, previous_node); vector <unsigned int>::iterator previous_particle_position = previous_positions.begin(); vector <double>::iterator previous_particle_weight = previous_weights.begin(); vector <double>::iterator current_particle_weight = current_weights.begin(); //cout << "First weight (before update): " << *current_weights.begin() << endl; proposal.setup_discrete_proposal(static_cast<ChainedSingleDiscretePotential &> (*internal_potential), *current_random_variable); for (vector <unsigned int>::iterator current_particle_position = current_positions.begin(); current_particle_position != current_positions.end(); ++current_particle_position) { // Sampling the new particle previous_random_variable->set_value (*previous_particle_position); interaction_potential->set_variable_value( *previous_random_variable); proposal.add_discrete_proposal(*interaction_potential, *current_random_variable); *current_particle_position = proposal.get_proposal_position(*current_random_variable); // This also sets the current_random_variable.last_sampled_value // Compute the new weight observation_potential->set_variable_value (*current_random_variable); // All of these are discrete potentials interaction_potential->set_variable_value (*current_random_variable); // Setting Internal Potential internal_potential->set_variable_value (*current_random_variable); // cout << "New particle, weight of old particle, obs, int, internal, prop: " << *current_particle_position << ", " << *previous_particle_weight << ", " << observation_potential->get_potential_value() << ", " << interaction_potential->get_potential_value() << ", " <<internal_potential->get_potential_value() << ", " << proposal->get_proposal_weight(*current_particle_position) << endl; *current_particle_weight = ( *previous_particle_weight * observation_potential->get_potential_value() * interaction_potential->get_potential_value() * internal_potential->get_potential_value() )/ proposal.get_proposal_weight(*current_particle_position); // cout << "Weight of new particle: " << *current_particle_weight << endl; ++previous_particle_position; ++previous_particle_weight; ++current_particle_weight; } // Normalize the weights if (!fast_double_normalize_over (current_weights.begin(), current_weights.end())) { cout << "Weights all to 0" << endl; } // Resample part resample (current_positions, current_weights, cumulative_distribution, stratified_weights, original_particles); //g[current_node]->get_random_variable()->set_mean_particles(current_positions); if (current_node == 54) { for ( vector <unsigned int>:: iterator it = current_positions.begin(); it != current_positions.end(); ++it) { //cout << *it << endl; } } if ( out_degree(current_node,g) == 2) { // We are finished return current_node; } double_previous_node = previous_node; previous_node = current_node; }}template < >void backward_smoothing_implementation < subgraph<DiscreteGraph>, DiscretePositionMap, DiscreteWeightMap > (subgraph<DiscreteGraph> & g, const graph_traits< subgraph<DiscreteGraph> >::vertex_descriptor tail_node, DiscretePositionMap & positions, DiscreteWeightMap & weights, const unsigned int number_samples){ //cout << "there" << endl; typedef graph_traits< subgraph<DiscreteGraph> >::vertex_descriptor VertexDescriptor; VertexDescriptor double_next_node, next_node, current_node; graph_traits<subgraph<DiscreteGraph> >::adjacency_iterator u, u_end; unsigned int next_sample_position, current_sample_position; RandomVariable * next_random_variable; RandomVariable * current_random_variable; vector <double> current_new_weights (get (weights, tail_node).size()); for (unsigned int current_sample = 0; current_sample < number_samples; ++current_sample) { //cout << "current sample" << current_sample << endl; next_node = tail_node; double_next_node = tail_node; current_node = tail_node; next_random_variable = g[next_node]->get_random_variable(); current_random_variable = g[current_node]->get_random_variable(); current_sample_position = static_cast < DiscreteRandomVariable * > (current_random_variable)->sample_from_particles(get (positions, tail_node), get (weights, tail_node)); next_sample_position = current_sample_position; g[current_node]->get_potential()->set_variable_value(* current_random_variable); // set the internal potential DiscretePotential * interaction_potential = NULL; DiscretePotential * internal_potential = NULL; while(true) { for (tie (u, u_end) = adjacent_vertices(next_node, g); u != u_end; ++u) { if (out_degree(*u,g) != 1) { // FIX_ME: done if ( *u != double_next_node) { current_node = *u; interaction_potential = g[edge(next_node, current_node, g).first]; internal_potential = static_cast < DiscretePotential *> (g[current_node]->get_potential() ); } } } //unsigned int current_variable_index = g[current_node]->get_random_variable()->get_index(); next_random_variable = g[next_node]->get_random_variable(); current_random_variable = g[current_node]->get_random_variable(); //cout << "Current node (BS) is " << current_variable_index << endl; // Here this is the only time we set up the interaction potential based on the sampled value interaction_potential->set_variable_value(* next_random_variable); vector <unsigned int> & current_positions = get (positions, current_node); vector <double> & current_weights = get (weights, current_node); vector <double>::iterator current_particle_weight = current_weights.begin(); vector <double>::iterator current_particle_new_weight = current_new_weights.begin(); for (vector <unsigned int>::iterator current_particle_position = current_positions.begin(); current_particle_position != current_positions.end(); ++current_particle_position) { static_cast <DiscreteRandomVariable *> (current_random_variable)->set_value(*current_particle_position); interaction_potential->set_variable_value( * current_random_variable); //cout << "Updated Weight (previous_weight, interaction_potential): " << *current_particle_weight * interaction_potential->get_potential_value() << " ( " << *current_particle_weight << ", " << interaction_potential->get_potential_value() << " ) " << endl; *current_particle_new_weight = *current_particle_weight * interaction_potential->get_potential_value(); ++current_particle_weight; ++current_particle_new_weight; } /* cout << "Updated Weights: " << endl; for ( vector <double>::iterator it = current_weights.begin(); it != current_weights.end(); ++it ) { cout << *it << endl; } */ // Normalize the weights (CRUCIAL HERE) fast_double_normalize_over (current_new_weights.begin(), current_new_weights.end()); // CHECK_ME: not sure about the node... Checked, OK current_sample_position = static_cast <DiscreteRandomVariable * > (current_random_variable)->sample_from_particles(current_positions, current_new_weights); next_sample_position = current_sample_position; vector <double>:: iterator jt = current_new_weights.begin(); if ( current_random_variable->get_index() == 55 ) { for ( vector <unsigned int>:: iterator it = current_positions.begin(); it != current_positions.end(); ++it) { //cout << *it << " " << *jt << endl; ++jt; } // cout << "*******************" << endl; } static_cast <DiscreteRandomVariable * > (current_random_variable)->set_mean_bw_particles(current_positions, current_new_weights); internal_potential->set_variable_value(*current_random_variable); if ( out_degree(current_node,g) == 2) { // We are finished break; } double_next_node = next_node; next_node = current_node; } }}template <>void non_parametric_tree_gibbs_sampler_implementation < DiscreteGraph> (DiscreteGraph & g, const unsigned int max_steps, const unsigned int number_particles, const unsigned int backward_samples, bool time){ typedef graph_traits<DiscreteGraph>::vertex_iterator VertexIterator; typedef graph_traits<DiscreteGraph>::adjacency_iterator AdjacencyIterator; typedef graph_traits<DiscreteGraph>::vertex_descriptor VertexDescriptor; typedef graph_traits<DiscreteGraph>::edge_descriptor EdgeDescriptor; typedef graph_traits< subgraph<DiscreteGraph> >::vertex_descriptor SubGraphVertexDescriptor; VertexIterator u, u_end; AdjacencyIterator v,v_end; VertexDescriptor w; subgraph<DiscreteGraph>::children_iterator current_tree, current_tree_end; subgraph <DiscreteGraph> subgraph_g; copy_graph(g, subgraph_g); // Use the following function if you are dealing with a MRF with same and pair number of rows / columns partition_mrf_graph_into_chains(subgraph_g); // Else use the following if you are dealing with a single chain //partition_simple_chain(subgraph_g); //display_subgraph(subgraph_g); // Following block set up the correct internal potential for a variable given the edges linking it to the other variables (conditionned) list < vector < vector < double > > * > trees_weights_map; list < vector < vector < unsigned int > > * > trees_positions_map; for ( tie(current_tree, current_tree_end) = subgraph_g.children(); current_tree != current_tree_end; ++current_tree) { vector < double > particles_weights (number_particles); vector < vector < double > > * weights_vector = new vector < vector < double > > ( num_vertices (*current_tree), particles_weights); trees_weights_map.push_back(weights_vector); vector < unsigned int > particles_positions (number_particles); vector < vector < unsigned int > > * positions_vector = new vector < vector < unsigned int > > ( num_vertices (*current_tree), particles_positions); trees_positions_map.push_back(positions_vector); for (tie(u,u_end) = vertices (*current_tree); u!= u_end; ++u) { w = current_tree->local_to_global(*u); for (tie(v, v_end)= adjacent_vertices ( w, g ); v != v_end; ++v) { if (!current_tree->find_vertex(*v).second) { // Add that edge potential to the ChainedSinglePotential // BUG HERE, it is the potential of the EDGE !!!!! ... Fixed static_cast < ChainedSingleDiscretePotential * > (g[w]->get_potential())->add_potential( g[edge(w,*v,g).first] ); } } } } // End list < vector < vector < unsigned int > > * >::iterator current_tree_positions_map = trees_positions_map.begin(); list < vector < vector < double > > * >::iterator current_tree_weights_map = trees_weights_map.begin(); vector < iterator_property_map < vector< vector < unsigned int > >::iterator, property_map < subgraph<DiscreteGraph>, vertex_index_t>::type > > positions_property_maps_vec; vector < iterator_property_map < vector< vector < double > >::iterator, property_map < subgraph<DiscreteGraph>, vertex_index_t>::type > > weights_property_maps_vec; for ( tie(current_tree, current_tree_end) = subgraph_g.children(); current_tree != current_tree_end; ++current_tree) { positions_property_maps_vec.push_back(make_iterator_property_map( (*current_tree_positions_map)->begin(), get(vertex_index, *current_tree))); weights_property_maps_vec.push_back(make_iterator_property_map( (*current_tree_weights_map)->begin(), get(vertex_index, *current_tree))); ++current_tree_weights_map; ++current_tree_positions_map; } cout << "Running NP Chain Gibbs (Discrete) with " << max_steps << (time ? " seconds and " : " steps and ") << number_particles << " particles." << endl; fibonnacci_number_generator.seed(std::time(NULL)); unsigned int gibbs_step(0); double time_used(0.0); double last_progress_dot_time = double (max_steps)/100.0; if (time) { global_timer.restart();
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -