📄 filtergraph.m
字号:
function outVals=filtergraph(W,vals,iterations,algorithm,normFlag)%function outVals=filtergraph(W,vals,iterations,algorithm,normFlag)%implements a low-pass filter on the coordinates using either a mean filter%or the filtering algorithm presented in Taubin's paper%%Inputs: W - NxN (weighted) adjacency matrix% vals - NxP set of values to filter% iterations - Number of iterations to apply% algorithm - Optional argument specifying the type of filter% [] - Mean filter (Default)% [kpb lambda] - The kpb and lambda parameters from% Taubin's paper (kpb = .1, lambda = .3 are typical% values)% normFlag - Optional flag that specifies normalization of the% output to the range of the input (columnwise)% 0 - No normalization (Default)% 1 - Normalize%%Outputs: outVals - NxP set of filtered values%%%References:%@InProceedings{taubin1995:signal,% author = {Taubin, G.},% title = {A signal processing approach to fair surface design},% booktitle = {Computer Graphics Proceedings. SIGGRAPH 95},% pages = {351--358},% year = 1995,% editor = {Cook, R.},% address = {Los Angeles, CA},% month = {August},% organization = {ACM},% publisher = {ACM} }%%%5/13/03 - Leo Grady% Copyright (C) 2002, 2003 Leo Grady <lgrady@cns.bu.edu>% Computer Vision and Computational Neuroscience Lab% Department of Cognitive and Neural Systems% Boston University% Boston, MA 02215%% This program is free software; you can redistribute it and/or% modify it under the terms of the GNU General Public License% as published by the Free Software Foundation; either version 2% of the License, or (at your option) any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program; if not, write to the Free Software% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.%% Date - $Id: filtergraph.m,v 1.2 2003/08/21 17:29:29 lgrady Exp $%========================================================================%%Process argumentsif nargin < 4 algorithm=[]; normFlag=0;elseif nargin < 5 normFlag=0;end%Preliminaries[N P]=size(vals);minVal=min(vals,[],1);maxVal=max(vals,[],1);%Choose filtering method and perform filteringif isempty(algorithm) %Mean filter Dinv=diag(sparse(1./(1+sum(W)))); outVals=vals; avgMat=Dinv*(W+speye(N)); for k=1:iterations outVals=avgMat*outVals; endelseif length(algorithm) == 2 %Build relevant matrices Dinv=diag(sparse(1./sum(W))); L=speye(N)-Dinv*W; L2=L*L; %Initialize lambda and mu kpb=algorithm(1); lambda=algorithm(2); mu=1/(kpb-1/lambda); coeffVector=[lambda,mu]; %Iterate filter to specified order outVals=vals; for k=1:iterations coeff=coeffVector(1+mod(k,2)); outVals=outVals-coeff*L2*outVals; endend if normFlag outVals=normalize(outVals,vals);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -