⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jdcoefct.c

📁 MCB2300_ucgui_LCD320240.rar LPC2368的uc/gui的移植
💻 C
📖 第 1 页 / 共 2 页
字号:
#define Q01_POS  1
#define Q10_POS  8
#define Q20_POS  16
#define Q11_POS  9
#define Q02_POS  2

/*
 * Determine whether block smoothing is applicable and safe.
 * We also latch the current states of the coef_bits[] entries for the
 * AC coefficients; otherwise, if the input side of the decompressor
 * advances into a new scan, we might think the coefficients are known
 * more accurately than they really are.
 */

LOCAL(boolean)
smoothing_ok(j_decompress_ptr cinfo)
{
	my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
	boolean smoothing_useful = FALSE;
	int ci, coefi;
	jpeg_component_info *compptr;
	JQUANT_TBL * qtable;
	int * coef_bits;
	int * coef_bits_latch;

	if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)
	{
		return FALSE;
	}

	/* Allocate latch area if not already done */
	if (coef->coef_bits_latch == NULL)
	{
		coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components * (SAVED_COEFS * SIZEOF(int)));
	}
	coef_bits_latch = coef->coef_bits_latch;

	for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++)
	{
		/* All components' quantization values must already be latched. */
		if ((qtable = compptr->quant_table) == NULL)
		{
			return FALSE;
		}
		/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
		if (qtable->quantval[0] == 0 || qtable->quantval[Q01_POS] == 0 || qtable->quantval[Q10_POS] == 0 || qtable->quantval[Q20_POS] == 0 || qtable->quantval[Q11_POS] == 0 || qtable->quantval[Q02_POS] == 0)
		{
			return FALSE;
		}
		/* DC values must be at least partly known for all components. */
		coef_bits = cinfo->coef_bits[ci];
		if (coef_bits[0] < 0)
		{
			return FALSE;
		}
		/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
		for (coefi = 1; coefi <= 5; coefi++)
		{
			coef_bits_latch[coefi] = coef_bits[coefi];
			if (coef_bits[coefi] != 0)
			{
				smoothing_useful = TRUE;
			}
		}
		coef_bits_latch += SAVED_COEFS;
	}

	return smoothing_useful;
}


/*
 * Variant of decompress_data for use when doing block smoothing.
 */

METHODDEF(int)
decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
	my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
	JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
	JDIMENSION block_num, last_block_column;
	int ci, block_row, block_rows, access_rows;
	JBLOCKARRAY buffer;
	JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
	JSAMPARRAY output_ptr;
	JDIMENSION output_col;
	jpeg_component_info *compptr;
	inverse_DCT_method_ptr inverse_DCT;
	boolean first_row, last_row;
	JBLOCK workspace;
	int *coef_bits;
	JQUANT_TBL *quanttbl;
	INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
	int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
	int Al, pred;

	/* Force some input to be done if we are getting ahead of the input. */
	while (cinfo->input_scan_number <= cinfo->output_scan_number && !cinfo->inputctl->eoi_reached)
	{
		if (cinfo->input_scan_number == cinfo->output_scan_number)
		{
			/* If input is working on current scan, we ordinarily want it to
			 * have completed the current row.  But if input scan is DC,
			 * we want it to keep one row ahead so that next block row's DC
			 * values are up to date.
			 */
			JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
			if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)
			{
				break;
			}
		}
		if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
		{
			return JPEG_SUSPENDED;
		}
	}

	/* OK, output from the virtual arrays. */
	for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++)
	{
		/* Don't bother to IDCT an uninteresting component. */
		if (!compptr->component_needed)
		{
			continue;
		}
		/* Count non-dummy DCT block rows in this iMCU row. */
		if (cinfo->output_iMCU_row < last_iMCU_row)
		{
			block_rows = compptr->v_samp_factor;
			access_rows = block_rows * 2; /* this and next iMCU row */
			last_row = FALSE;
		}
		else
		{
			/* NB: can't use last_row_height here; it is input-side-dependent! */
			block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
			if (block_rows == 0)
			{
				block_rows = compptr->v_samp_factor;
			}
			access_rows = block_rows; /* this iMCU row only */
			last_row = TRUE;
		}
		/* Align the virtual buffer for this component. */
		if (cinfo->output_iMCU_row > 0)
		{
			access_rows += compptr->v_samp_factor; /* prior iMCU row too */
			buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, (JDIMENSION) access_rows, FALSE);
			buffer += compptr->v_samp_factor;	/* point to current iMCU row */
			first_row = FALSE;
		}
		else
		{
			buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
			first_row = TRUE;
		}
		/* Fetch component-dependent info */
		coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
		quanttbl = compptr->quant_table;
		Q00 = quanttbl->quantval[0];
		Q01 = quanttbl->quantval[Q01_POS];
		Q10 = quanttbl->quantval[Q10_POS];
		Q20 = quanttbl->quantval[Q20_POS];
		Q11 = quanttbl->quantval[Q11_POS];
		Q02 = quanttbl->quantval[Q02_POS];
		inverse_DCT = cinfo->idct->inverse_DCT[ci];
		output_ptr = output_buf[ci];
		/* Loop over all DCT blocks to be processed. */
		for (block_row = 0; block_row < block_rows; block_row++)
		{
			buffer_ptr = buffer[block_row];
			if (first_row && block_row == 0)
			{
				prev_block_row = buffer_ptr;
			}
			else
			{
				prev_block_row = buffer[block_row - 1];
			}
			if (last_row && block_row == block_rows - 1)
			{
				next_block_row = buffer_ptr;
			}
			else
			{
				next_block_row = buffer[block_row + 1];
			}
			/* We fetch the surrounding DC values using a sliding-register approach.
			 * Initialize all nine here so as to do the right thing on narrow pics.
			 */
			DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
			DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
			DC7 = DC8 = DC9 = (int) next_block_row[0][0];
			output_col = 0;
			last_block_column = compptr->width_in_blocks - 1;
			for (block_num = 0; block_num <= last_block_column; block_num++)
			{
				/* Fetch current DCT block into workspace so we can modify it. */
				jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
				/* Update DC values */
				if (block_num < last_block_column)
				{
					DC3 = (int) prev_block_row[1][0];
					DC6 = (int) buffer_ptr[1][0];
					DC9 = (int) next_block_row[1][0];
				}
				/* Compute coefficient estimates per K.8.
				 * An estimate is applied only if coefficient is still zero,
				 * and is not known to be fully accurate.
				 */
				/* AC01 */
				if ((Al = coef_bits[1]) != 0 && workspace[1] == 0)
				{
					num = 36 * Q00 * (DC4 - DC6);
					if (num >= 0)
					{
						pred = (int) (((Q01 << 7) + num) / (Q01 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
					}
					else
					{
						pred = (int) (((Q01 << 7) - num) / (Q01 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
						pred = -pred;
					}
					workspace[1] = (JCOEF) pred;
				}
				/* AC10 */
				if ((Al = coef_bits[2]) != 0 && workspace[8] == 0)
				{
					num = 36 * Q00 * (DC2 - DC8);
					if (num >= 0)
					{
						pred = (int) (((Q10 << 7) + num) / (Q10 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
					}
					else
					{
						pred = (int) (((Q10 << 7) - num) / (Q10 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
						pred = -pred;
					}
					workspace[8] = (JCOEF) pred;
				}
				/* AC20 */
				if ((Al = coef_bits[3]) != 0 && workspace[16] == 0)
				{
					num = 9 * Q00 * (DC2 + DC8 - 2 * DC5);
					if (num >= 0)
					{
						pred = (int) (((Q20 << 7) + num) / (Q20 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
					}
					else
					{
						pred = (int) (((Q20 << 7) - num) / (Q20 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
						pred = -pred;
					}
					workspace[16] = (JCOEF) pred;
				}
				/* AC11 */
				if ((Al = coef_bits[4]) != 0 && workspace[9] == 0)
				{
					num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
					if (num >= 0)
					{
						pred = (int) (((Q11 << 7) + num) / (Q11 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
					}
					else
					{
						pred = (int) (((Q11 << 7) - num) / (Q11 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
						pred = -pred;
					}
					workspace[9] = (JCOEF) pred;
				}
				/* AC02 */
				if ((Al = coef_bits[5]) != 0 && workspace[2] == 0)
				{
					num = 9 * Q00 * (DC4 + DC6 - 2 * DC5);
					if (num >= 0)
					{
						pred = (int) (((Q02 << 7) + num) / (Q02 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
					}
					else
					{
						pred = (int) (((Q02 << 7) - num) / (Q02 << 8));
						if (Al > 0 && pred >= (1 << Al))
						{
							pred = (1 << Al) - 1;
						}
						pred = -pred;
					}
					workspace[2] = (JCOEF) pred;
				}
				/* OK, do the IDCT */
				(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, output_ptr, output_col);
				/* Advance for next column */
				DC1 = DC2; DC2 = DC3;
				DC4 = DC5; DC5 = DC6;
				DC7 = DC8; DC8 = DC9;
				buffer_ptr++, prev_block_row++, next_block_row++;
				output_col += compptr->DCT_scaled_size;
			}
			output_ptr += compptr->DCT_scaled_size;
		}
	}

	if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
	{
		return JPEG_ROW_COMPLETED;
	}
	return JPEG_SCAN_COMPLETED;
}

#endif /* BLOCK_SMOOTHING_SUPPORTED */


/*
 * Initialize coefficient buffer controller.
 */

GLOBAL(void)
jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
{
	my_coef_ptr coef;

	coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller));
	cinfo->coef = (struct jpeg_d_coef_controller *) coef;
	coef->pub.start_input_pass = start_input_pass;
	coef->pub.start_output_pass = start_output_pass;
#ifdef BLOCK_SMOOTHING_SUPPORTED
	coef->coef_bits_latch = NULL;
#endif

	/* Create the coefficient buffer. */
	if (need_full_buffer)
	{
#ifdef D_MULTISCAN_FILES_SUPPORTED
		/* Allocate a full-image virtual array for each component, */
		/* padded to a multiple of samp_factor DCT blocks in each direction. */
		/* Note we ask for a pre-zeroed array. */
		int ci, access_rows;
		jpeg_component_info *compptr;

		for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++)
		{
			access_rows = compptr->v_samp_factor;
#ifdef BLOCK_SMOOTHING_SUPPORTED
			/* If block smoothing could be used, need a bigger window */
			if (cinfo->progressive_mode)
			{
				access_rows *= 3;
			}
#endif
			coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, (JDIMENSION) jround_up((long) compptr->width_in_blocks, (long) compptr->h_samp_factor), (JDIMENSION) jround_up((long) compptr->height_in_blocks, (long) compptr->v_samp_factor), (JDIMENSION) access_rows);
		}
		coef->pub.consume_data = consume_data;
		coef->pub.decompress_data = decompress_data;
		coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
#else
		ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
	}
	else
	{
		/* We only need a single-MCU buffer. */
		JBLOCKROW buffer;
		int i;

		buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
		for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++)
		{
			coef->MCU_buffer[i] = buffer + i;
		}
		coef->pub.consume_data = dummy_consume_data;
		coef->pub.decompress_data = decompress_onepass;
		coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -