📄 renyi.m
字号:
function r=renyi(tfr,t,f,alpha);%RENYI Measure Renyi information.% R=RENYI(TFR,T,F,ALPHA) measures the Renyi information relative % to a 2-D density function TFR (which can be eventually a TF% representation).%% TFR : (M,N) 2-D density function (or mass function). Eventually% TFR can be a time-frequency representation, in which case% its first row must correspond to the lower frequencies% T : abscissa vector parametrizing the TFR matrix. T can be a% non-uniform sampled vector (eventually a time vector)% (default : (1:N)). % F : ordinate vector parametrizing the TFR matrix. F can be a% non-uniform sampled vector (eventually a frequency vector)% (default : (1:M)). % ALPHA : rank of the Renyi measure (default : 3).% R : the alpha-rank Renyi measure (in bits if TFR is a time- % frequency matrix) :% R=log2[Sum[TFR(Fi,Ti)^ALPHA dFi.dTi]/(1-ALPHA)]% Fi,Ti%% Example :% s=atoms(64,[32,.3,16,1]); [TFR,T,F]=tfrsp(s); R=renyi(TFR,T,F,3) % s=atoms(64,[16,.2,10,1;40,.4,12,1]); [TFR,T,F]=tfrsp(s); % R=renyi(TFR,T,F,3) % P. Goncalves, October 95% Copyright (c) 1995 Rice University.%% ------------------- CONFIDENTIAL PROGRAM -------------------- % This program can not be used without the authorization of its% author(s). For any comment or bug report, please send e-mail to % f.auger@ieee.org if (nargin == 0), error('At least one parameter required');end;[M,N] = size(tfr);if (nargin == 1), t=1:N; f=(1:M)'; alpha=3;elseif (nargin == 2), f=(1:M)'; alpha=3;elseif (nargin == 3), alpha=3;end;f=sort(f);tfr = tfr./integ2d(tfr,t,f);if alpha == 1 if (min(min(tfr))<0), error('distribution with negative values => alpha=1 not allowed'); else r=-integ2d(tfr.*log2(tfr+eps),t,f); endelse r=log2(integ2d(tfr.^alpha,t,f)+eps)/(1-alpha) ;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -