📄 wb_syn_filt.cpp
字号:
/* ------------------------------------------------------------------ * Copyright (C) 2008 PacketVideo * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. * See the License for the specific language governing permissions * and limitations under the License. * ------------------------------------------------------------------- *//****************************************************************************************Portions of this file are derived from the following 3GPP standard: 3GPP TS 26.173 ANSI-C code for the Adaptive Multi-Rate - Wideband (AMR-WB) speech codec Available from http://www.3gpp.org(C) 2007, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC)Permission to distribute, modify and use this file under the standard licenseterms listed above has been obtained from the copyright holder.****************************************************************************************//*------------------------------------------------------------------------------ Filename: wb_syn_filt.cpp Date: 05/08/2004------------------------------------------------------------------------------ REVISION HISTORY Description:------------------------------------------------------------------------------ INPUT AND OUTPUT DEFINITIONSwb_syn_filt int16 a[], (i) Q12 : a[m+1] prediction coefficients int16 m, (i) : order of LP filter int16 x[], (i) : input signal int16 y[], (o) : output signal int16 lg, (i) : size of filtering int16 mem[], (i/o) : memory associated with this filtering. int16 update, (i) : 0=no update, 1=update of memory. int16 y_buf[]Syn_filt_32 int16 a[], (i) Q12 : a[m+1] prediction coefficients int16 m, (i) : order of LP filter int16 exc[], (i) Qnew: excitation (exc[i] >> Qnew) int16 Qnew, (i) : exc scaling = 0(min) to 8(max) int16 sig_hi[], (o) /16 : synthesis high int16 sig_lo[], (o) /16 : synthesis low int16 lg (i) : size of filtering------------------------------------------------------------------------------ FUNCTION DESCRIPTION Do the synthesis filtering 1/A(z) 16 and 32-bits version------------------------------------------------------------------------------ REQUIREMENTS------------------------------------------------------------------------------ REFERENCES------------------------------------------------------------------------------ PSEUDO-CODE------------------------------------------------------------------------------*//*----------------------------------------------------------------------------; INCLUDES----------------------------------------------------------------------------*/#include "pv_amr_wb_type_defs.h"#include "pvamrwbdecoder_mem_funcs.h"#include "pvamrwbdecoder_basic_op.h"#include "pvamrwb_math_op.h"#include "pvamrwbdecoder_cnst.h"#include "pvamrwbdecoder_acelp.h"/*----------------------------------------------------------------------------; MACROS; Define module specific macros here----------------------------------------------------------------------------*//*----------------------------------------------------------------------------; DEFINES; Include all pre-processor statements here. Include conditional; compile variables also.----------------------------------------------------------------------------*//*----------------------------------------------------------------------------; EXTERNAL FUNCTION REFERENCES; Declare functions defined elsewhere and referenced in this module----------------------------------------------------------------------------*//*----------------------------------------------------------------------------; EXTERNAL GLOBAL STORE/BUFFER/POINTER REFERENCES; Declare variables used in this module but defined elsewhere----------------------------------------------------------------------------*//*----------------------------------------------------------------------------; FUNCTION CODE----------------------------------------------------------------------------*/void wb_syn_filt( int16 a[], /* (i) Q12 : a[m+1] prediction coefficients */ int16 m, /* (i) : order of LP filter */ int16 x[], /* (i) : input signal */ int16 y[], /* (o) : output signal */ int16 lg, /* (i) : size of filtering */ int16 mem[], /* (i/o) : memory associated with this filtering. */ int16 update, /* (i) : 0=no update, 1=update of memory. */ int16 y_buf[]){ int16 i, j; int32 L_tmp1; int32 L_tmp2; int32 L_tmp3; int32 L_tmp4; int16 *yy; /* copy initial filter states into synthesis buffer */ pv_memcpy(y_buf, mem, m*sizeof(*yy)); yy = &y_buf[m]; /* Do the filtering. */ for (i = 0; i < lg >> 2; i++) { L_tmp1 = -((int32)x[(i<<2)] << 11); L_tmp2 = -((int32)x[(i<<2)+1] << 11); L_tmp3 = -((int32)x[(i<<2)+2] << 11); L_tmp4 = -((int32)x[(i<<2)+3] << 11); /* a[] uses Q12 and abs(a) =< 1 */ L_tmp1 = fxp_mac_16by16(yy[(i<<2) -3], a[3], L_tmp1); L_tmp2 = fxp_mac_16by16(yy[(i<<2) -2], a[3], L_tmp2); L_tmp1 = fxp_mac_16by16(yy[(i<<2) -2], a[2], L_tmp1); L_tmp2 = fxp_mac_16by16(yy[(i<<2) -1], a[2], L_tmp2); L_tmp1 = fxp_mac_16by16(yy[(i<<2) -1], a[1], L_tmp1); for (j = 4; j < m; j += 2) { L_tmp1 = fxp_mac_16by16(yy[(i<<2)-1 - j], a[j+1], L_tmp1); L_tmp2 = fxp_mac_16by16(yy[(i<<2) - j], a[j+1], L_tmp2); L_tmp1 = fxp_mac_16by16(yy[(i<<2) - j], a[j ], L_tmp1); L_tmp2 = fxp_mac_16by16(yy[(i<<2)+1 - j], a[j ], L_tmp2); L_tmp3 = fxp_mac_16by16(yy[(i<<2)+1 - j], a[j+1], L_tmp3); L_tmp4 = fxp_mac_16by16(yy[(i<<2)+2 - j], a[j+1], L_tmp4); L_tmp3 = fxp_mac_16by16(yy[(i<<2)+2 - j], a[j ], L_tmp3); L_tmp4 = fxp_mac_16by16(yy[(i<<2)+3 - j], a[j ], L_tmp4); } L_tmp1 = fxp_mac_16by16(yy[(i<<2) - j], a[j], L_tmp1); L_tmp2 = fxp_mac_16by16(yy[(i<<2)+1 - j], a[j], L_tmp2); L_tmp3 = fxp_mac_16by16(yy[(i<<2)+2 - j], a[j], L_tmp3); L_tmp4 = fxp_mac_16by16(yy[(i<<2)+3 - j], a[j], L_tmp4); L_tmp1 = shl_int32(L_tmp1, 4); y[(i<<2)] = yy[(i<<2)] = amr_wb_round(-L_tmp1); L_tmp2 = fxp_mac_16by16(yy[(i<<2)], a[1], L_tmp2); L_tmp2 = shl_int32(L_tmp2, 4); y[(i<<2)+1] = yy[(i<<2)+1] = amr_wb_round(-L_tmp2); L_tmp3 = fxp_mac_16by16(yy[(i<<2) - 1], a[3], L_tmp3); L_tmp4 = fxp_mac_16by16(yy[(i<<2)], a[3], L_tmp4); L_tmp3 = fxp_mac_16by16(yy[(i<<2)], a[2], L_tmp3); L_tmp4 = fxp_mac_16by16(yy[(i<<2) + 1], a[2], L_tmp4); L_tmp3 = fxp_mac_16by16(yy[(i<<2) + 1], a[1], L_tmp3); L_tmp3 = shl_int32(L_tmp3, 4); y[(i<<2)+2] = yy[(i<<2)+2] = amr_wb_round(-L_tmp3); L_tmp4 = fxp_mac_16by16(yy[(i<<2)+2], a[1], L_tmp4); L_tmp4 = shl_int32(L_tmp4, 4); y[(i<<2)+3] = yy[(i<<2)+3] = amr_wb_round(-L_tmp4); } /* Update memory if required */ if (update) { pv_memcpy(mem, &y[lg - m], m*sizeof(*y)); } return;}/*----------------------------------------------------------------------------; FUNCTION CODE----------------------------------------------------------------------------*/void Syn_filt_32( int16 a[], /* (i) Q12 : a[m+1] prediction coefficients */ int16 m, /* (i) : order of LP filter */ int16 exc[], /* (i) Qnew: excitation (exc[i] >> Qnew) */ int16 Qnew, /* (i) : exc scaling = 0(min) to 8(max) */ int16 sig_hi[], /* (o) /16 : synthesis high */ int16 sig_lo[], /* (o) /16 : synthesis low */ int16 lg /* (i) : size of filtering */){ int16 i, k, a0; int32 L_tmp1; int32 L_tmp2; int32 L_tmp3; int32 L_tmp4; a0 = 9 - Qnew; /* input / 16 and >>Qnew */ /* Do the filtering. */ for (i = 0; i < lg >> 1; i++) { L_tmp3 = 0; L_tmp4 = 0; L_tmp1 = fxp_mul_16by16(sig_lo[(i<<1) - 1], a[1]); L_tmp2 = fxp_mul_16by16(sig_hi[(i<<1) - 1], a[1]); for (k = 2; k < m; k += 2) { L_tmp1 = fxp_mac_16by16(sig_lo[(i<<1)-1 - k], a[k+1], L_tmp1); L_tmp2 = fxp_mac_16by16(sig_hi[(i<<1)-1 - k], a[k+1], L_tmp2); L_tmp1 = fxp_mac_16by16(sig_lo[(i<<1) - k], a[k ], L_tmp1); L_tmp2 = fxp_mac_16by16(sig_hi[(i<<1) - k], a[k ], L_tmp2); L_tmp3 = fxp_mac_16by16(sig_lo[(i<<1) - k], a[k+1], L_tmp3); L_tmp4 = fxp_mac_16by16(sig_hi[(i<<1) - k], a[k+1], L_tmp4); L_tmp3 = fxp_mac_16by16(sig_lo[(i<<1)+1 - k], a[k ], L_tmp3); L_tmp4 = fxp_mac_16by16(sig_hi[(i<<1)+1 - k], a[k ], L_tmp4); } L_tmp1 = -fxp_mac_16by16(sig_lo[(i<<1) - k], a[k], L_tmp1); L_tmp3 = fxp_mac_16by16(sig_lo[(i<<1)+1 - k], a[k], L_tmp3); L_tmp2 = fxp_mac_16by16(sig_hi[(i<<1) - k], a[k], L_tmp2); L_tmp4 = fxp_mac_16by16(sig_hi[(i<<1)+1 - k], a[k], L_tmp4); L_tmp1 >>= 11; /* -4 : sig_lo[i] << 4 */ L_tmp1 += (int32)exc[(i<<1)] << a0; L_tmp1 -= (L_tmp2 << 1); /* sig_hi = bit16 to bit31 of synthesis */ L_tmp1 = shl_int32(L_tmp1, 3); /* ai in Q12 */ sig_hi[(i<<1)] = (int16)(L_tmp1 >> 16); L_tmp4 = fxp_mac_16by16((int16)(L_tmp1 >> 16), a[1], L_tmp4); /* sig_lo = bit4 to bit15 of synthesis */ /* L_tmp1 >>= 4 : sig_lo[i] >> 4 */ sig_lo[(i<<1)] = (int16)((L_tmp1 >> 4) - ((L_tmp1 >> 16) << 12)); L_tmp3 = fxp_mac_16by16(sig_lo[(i<<1)], a[1], L_tmp3); L_tmp3 = -L_tmp3 >> 11; L_tmp3 += (int32)exc[(i<<1)+1] << a0; L_tmp3 -= (L_tmp4 << 1); /* sig_hi = bit16 to bit31 of synthesis */ L_tmp3 = shl_int32(L_tmp3, 3); /* ai in Q12 */ sig_hi[(i<<1)+1] = (int16)(L_tmp3 >> 16); /* sig_lo = bit4 to bit15 of synthesis */ /* L_tmp1 >>= 4 : sig_lo[i] >> 4 */ sig_lo[(i<<1)+1] = (int16)((L_tmp3 >> 4) - (sig_hi[(i<<1)+1] << 12)); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -