📄 ex2.m
字号:
I = imread('car.jpg'); %
I2 = rgb2gray(I);%取灰度图
I4 = im2bw(I2, 0.2); %二值化
bw = bwareaopen(I4, 500); %删除小面积对像
se = strel('disk',15); %指定领域的平面结构化元素
bw = imclose(bw,se);
bw = imfill(bw,[1 1]);
[B,L] = bwboundaries(bw,4);
imshow(label2rgb(L, @jet, [.5 .5 .5]))
hold on
for k = 1:length(B)
boundary = B{k};
plot(boundary(:,2),boundary(:,1),'w','LineWidth',2)
end
% 找到每个连通域的质心
stats = regionprops(L,'Area','Centroid');
% 循环历遍每个连通域的边界
for k = 1:length(B)
% 获取一条边界上的所有点
boundary = B{k};
% 计算边界周长
delta_sq = diff(boundary).^2;
perimeter = sum(sqrt(sum(delta_sq,2)));
% 获取边界所围面积
area = stats(k).Area;
% 计算匹配度
metric = 27*area/perimeter^2;
% 要显示的匹配度字串
metric_string = sprintf('%2.2f',metric);
% 标记出匹配度接近1的连通域
if metric >= 0.9 && metric <= 1.1
centroid = stats(k).Centroid;
plot(centroid(1),centroid(2),'ko');
% 提取该连通域所对应在二值图像中的矩形区域
goalboundary = boundary;
s = min(goalboundary, [], 1);
e = max(goalboundary, [], 1);
goal = imcrop(I4,[s(2) s(1) e(2)-s(2) e(1)-s(1)]);
end
% 显示匹配度字串
text(boundary(1,2)-35,boundary(1,1)+13,...
metric_string,'Color','g',...
'FontSize',14,'FontWeight','bold');
end
goal = ~goal;
goal(256,256) = 0;
figure;
imshow(goal);
w = imread('P.bmp');
w = ~w;
C=real(ifft2(fft2(goal).*fft2(rot90(w,2),256,256)));
thresh = 240;
figure;
imshow(C > thresh);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -