📄 hal_stub.c
字号:
void initHardware (void) { static int initialized = 0; if (initialized) return; initialized = 1; // Get serial port initialized. HAL_STUB_PLATFORM_INIT_SERIAL();#ifdef HAL_STUB_PLATFORM_INIT // If the platform defines any initialization code, call it here. HAL_STUB_PLATFORM_INIT();#endif #ifndef CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT // this should go away#ifdef CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT // Get interrupt handler initialized. HAL_STUB_PLATFORM_INIT_BREAK_IRQ();#endif#endif // !CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT}// Reset the board.void __reset (void){#ifdef CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT __call_if_reset_t *__rom_reset = CYGACC_CALL_IF_RESET_GET(); if (__rom_reset) (*__rom_reset)();#else HAL_PLATFORM_RESET();#endif}//-----------------------------------------------------------------------------// Breakpoint support.#ifndef CYGPKG_HAL_ARM// This function will generate a breakpoint exception. It is used at// the beginning of a program to sync up with a debugger and can be// used otherwise as a quick means to stop program execution and// "break" into the debugger.voidbreakpoint(){ HAL_BREAKPOINT(_breakinst);}// This function returns the opcode for a 'trap' instruction.unsigned long __break_opcode (){ return HAL_BREAKINST;}#endif//-----------------------------------------------------------------------------// Write the 'T' packet in BUFFER. SIGVAL is the signal the program received.void __build_t_packet (int sigval, char *buf){ target_register_t addr; char *ptr = buf; target_register_t extend_val = 0; *ptr++ = 'T'; *ptr++ = __tohex (sigval >> 4); *ptr++ = __tohex (sigval);#ifdef CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT // Include thread ID if thread manipulation is required. { int id = dbg_currthread_id (); if (id != 0) { *ptr++ = 't'; *ptr++ = 'h'; *ptr++ = 'r'; *ptr++ = 'e'; *ptr++ = 'a'; *ptr++ = 'd'; *ptr++ = ':';#if (CYG_BYTEORDER == CYG_LSBFIRST) // FIXME: Temporary workaround for PR 18903. Thread ID must be // big-endian in the T packet. { unsigned char* bep = (unsigned char*)&id; int be_id; be_id = id; *bep++ = (be_id >> 24) & 0xff ; *bep++ = (be_id >> 16) & 0xff ; *bep++ = (be_id >> 8) & 0xff ; *bep++ = (be_id & 0xff) ; }#endif ptr = __mem2hex((char *)&id, ptr, sizeof(id), 0); *ptr++ = ';'; } }#endif#ifdef HAL_STUB_HW_WATCHPOINT switch(_hw_stop_reason) { case HAL_STUB_HW_STOP_WATCH: case HAL_STUB_HW_STOP_RWATCH: case HAL_STUB_HW_STOP_AWATCH:#ifdef HAL_STUB_HW_SEND_STOP_REASON_TEXT // Not all GDBs understand this. strcpy(ptr, _hw_stop_str[_hw_stop_reason]); ptr += strlen(_hw_stop_str[_hw_stop_reason]);#endif *ptr++ = ':'; // Send address MSB first ptr += __intToHex(ptr, (target_register_t)_watch_data_addr, sizeof(_watch_data_addr) * 8); *ptr++ = ';'; break; default: break; }#endif *ptr++ = __tohex (PC >> 4); *ptr++ = __tohex (PC); *ptr++ = ':'; addr = get_register (PC); if (sizeof(addr) < REGSIZE(PC)) { // GDB is expecting REGSIZE(PC) number of bytes. // We only have sizeof(addr) number. Let's fill // the appropriate number of bytes intelligently.#ifdef CYGARC_SIGN_EXTEND_REGISTERS { unsigned long bits_in_addr = (sizeof(addr) << 3); // ie Size in bytes * 8 target_register_t sign_bit_mask = (1 << (bits_in_addr - 1)); if ((addr & sign_bit_mask) == sign_bit_mask) extend_val = ~0; }#endif }#if (CYG_BYTEORDER == CYG_MSBFIRST) ptr = __mem2hex((char *)&extend_val, ptr, REGSIZE(PC) - sizeof(addr), 0);#endif ptr = __mem2hex((char *)&addr, ptr, sizeof(addr), 0);#if (CYG_BYTEORDER == CYG_LSBFIRST) ptr = __mem2hex((char *)&extend_val, ptr, REGSIZE(PC) - sizeof(addr), 0);#endif *ptr++ = ';'; *ptr++ = __tohex (SP >> 4); *ptr++ = __tohex (SP); *ptr++ = ':'; addr = (target_register_t) get_register (SP); if (sizeof(addr) < REGSIZE(SP)) { // GDB is expecting REGSIZE(SP) number of bytes. // We only have sizeof(addr) number. Let's fill // the appropriate number of bytes intelligently. extend_val = 0;#ifdef CYGARC_SIGN_EXTEND_REGISTERS { unsigned long bits_in_addr = (sizeof(addr) << 3); // ie Size in bytes * 8 target_register_t sign_bit_mask = (1 << (bits_in_addr - 1)); if ((addr & sign_bit_mask) == sign_bit_mask) extend_val = ~0; }#endif ptr = __mem2hex((char *)&extend_val, ptr, REGSIZE(SP) - sizeof(addr), 0); } ptr = __mem2hex((char *)&addr, ptr, sizeof(addr), 0); *ptr++ = ';'; HAL_STUB_ARCH_T_PACKET_EXTRAS(ptr); *ptr++ = 0;}//-----------------------------------------------------------------------------// Cache functions.// Perform the specified operation on the instruction cache. // Returns 1 if the cache is enabled, 0 otherwise.int __instruction_cache (cache_control_t request){ int state = 1; switch (request) { case CACHE_ENABLE: HAL_ICACHE_ENABLE(); break; case CACHE_DISABLE: HAL_ICACHE_DISABLE(); state = 0; break; case CACHE_FLUSH: HAL_ICACHE_SYNC(); break; case CACHE_NOOP: /* fall through */ default: break; }#ifdef HAL_ICACHE_IS_ENABLED HAL_ICACHE_IS_ENABLED(state);#endif return state;}// Perform the specified operation on the data cache. // Returns 1 if the cache is enabled, 0 otherwise.int __data_cache (cache_control_t request){ int state = 1; switch (request) { case CACHE_ENABLE: HAL_DCACHE_ENABLE(); break; case CACHE_DISABLE: HAL_DCACHE_DISABLE(); state = 0; break; case CACHE_FLUSH: HAL_DCACHE_SYNC(); break; case CACHE_NOOP: /* fall through */ default: break; }#ifdef HAL_DCACHE_IS_ENABLED HAL_DCACHE_IS_ENABLED(state);#endif return state;}//-----------------------------------------------------------------------------// Memory accessor functions.// The __mem_fault_handler pointer is volatile since it is only// set/cleared by the function below - which does not rely on any// other functions, so the compiler may decide to not bother updating// the pointer at all. If any of the memory accesses cause an// exception, the pointer must be set to ensure the exception handler// can make use of it.void* volatile __mem_fault_handler = (void *)0;/* These are the "arguments" to __do_read_mem and __do_write_mem, which are passed as globals to avoid squeezing them thru __set_mem_fault_trap. */static volatile target_register_t memCount;static void__do_copy_mem (unsigned char* src, unsigned char* dst){ unsigned long *long_dst; unsigned long *long_src; unsigned short *short_dst; unsigned short *short_src; // Zero memCount is not really an error, but the goto is necessary to // keep some compilers from reordering stuff across the 'err' label. if (memCount == 0) goto err; __mem_fault = 1; /* Defaults to 'fail'. Is cleared */ /* when the copy loop completes. */ __mem_fault_handler = &&err; // See if it's safe to do multi-byte, aligned operations while (memCount) { if ((memCount >= sizeof(long)) && (((target_register_t)dst & (sizeof(long)-1)) == 0) && (((target_register_t)src & (sizeof(long)-1)) == 0)) { long_dst = (unsigned long *)dst; long_src = (unsigned long *)src; *long_dst++ = *long_src++; memCount -= sizeof(long); dst = (unsigned char *)long_dst; src = (unsigned char *)long_src; } else if ((memCount >= sizeof(short)) && (((target_register_t)dst & (sizeof(short)-1)) == 0) && (((target_register_t)src & (sizeof(short)-1)) == 0)) { short_dst = (unsigned short *)dst; short_src = (unsigned short *)src; *short_dst++ = *short_src++; memCount -= sizeof(short); dst = (unsigned char *)short_dst; src = (unsigned char *)short_src; } else { *dst++ = *src++; memCount--; } } __mem_fault = 0; err: __mem_fault_handler = (void *)0;}/* * __read_mem_safe: * Get contents of target memory, abort on error. */int__read_mem_safe (void *dst, void *src, int count){ if( !CYG_HAL_STUB_PERMIT_DATA_READ( src, count ) ) return 0; memCount = count; __do_copy_mem((unsigned char*) src, (unsigned char*) dst); return count - memCount; // return number of bytes successfully read}/* * __write_mem_safe: * Set contents of target memory, abort on error. */int__write_mem_safe (void *src, void *dst, int count){ if( !CYG_HAL_STUB_PERMIT_DATA_READ( dst, count ) ) return 0; memCount = count; __do_copy_mem((unsigned char*) src, (unsigned char*) dst); return count - memCount; // return number of bytes successfully written}#ifdef TARGET_HAS_HARVARD_MEMORYstatic void__do_copy_from_progmem (unsigned char* src, unsigned char* dst){ unsigned long *long_dst; unsigned long *long_src; unsigned short *short_dst; unsigned short *short_src; // Zero memCount is not really an error, but the goto is necessary to // keep some compilers from reordering stuff across the 'err' label. if (memCount == 0) goto err; __mem_fault = 1; /* Defaults to 'fail'. Is cleared */ /* when the copy loop completes. */ __mem_fault_handler = &&err; // See if it's safe to do multi-byte, aligned operations while (memCount) { if ((memCount >= sizeof(long)) && (((target_register_t)dst & (sizeof(long)-1)) == 0) && (((target_register_t)src & (sizeof(long)-1)) == 0)) { long_dst = (unsigned long *)dst; long_src = (unsigned long *)src; *long_dst++ = __read_prog_uint32(long_src++); memCount -= sizeof(long); dst = (unsigned char *)long_dst; src = (unsigned char *)long_src; } else if ((memCount >= sizeof(short)) && (((target_register_t)dst & (sizeof(short)-1)) == 0) && (((target_register_t)src & (sizeof(short)-1)) == 0)) { short_dst = (unsigned short *)dst; short_src = (unsigned short *)src; *short_dst++ = __read_prog_uint16(short_src++); memCount -= sizeof(short); dst = (unsigned char *)short_dst; src = (unsigned char *)short_src; } else { *dst++ = __read_prog_uint8(src++); memCount--; } } __mem_fault = 0; err: __mem_fault_handler = (void *)0;}static void__do_copy_to_progmem (unsigned char* src, unsigned char* dst){ unsigned long *long_dst; unsigned long *long_src; unsigned short *short_dst; unsigned short *short_src; // Zero memCount is not really an error, but the goto is necessary to // keep some compilers from reordering stuff across the 'err' label. if (memCount == 0) goto err; __mem_fault = 1; /* Defaults to 'fail'. Is cleared */ /* when the copy loop completes. */ __mem_fault_handler = &&err; // See if it's safe to do multi-byte, aligned operations while (memCount) { if ((memCount >= sizeof(long)) && (((target_register_t)dst & (sizeof(long)-1)) == 0) && (((target_register_t)src & (sizeof(long)-1)) == 0)) { long_dst = (unsigned long *)dst; long_src = (unsigned long *)src; __write_prog_uint32(long_dst++, *long_src++); memCount -= sizeof(long); dst = (unsigned char *)long_dst; src = (unsigned char *)long_src; } else if ((memCount >= sizeof(short)) && (((target_register_t)dst & (sizeof(short)-1)) == 0) && (((target_register_t)src & (sizeof(short)-1)) == 0)) { short_dst = (unsigned short *)dst; short_src = (unsigned short *)src; __write_prog_uint16(short_dst++, *short_src++); memCount -= sizeof(short); dst = (unsigned char *)short_dst; src = (unsigned char *)short_src; } else { __write_prog_uint8(dst++, *src++); memCount--; } } __mem_fault = 0; err: __mem_fault_handler = (void *)0;}/* * __read_progmem_safe: * Get contents of target memory, abort on error. */int__read_progmem_safe (void *dst, void *src, int count){ if( !CYG_HAL_STUB_PERMIT_CODE_READ( src, count ) ) return 0; memCount = count; __do_copy_from_progmem((unsigned char*) src, (unsigned char*) dst); return count - memCount; // return number of bytes successfully read}/* * __write_progmem_safe: * Set contents of target memory, abort on error. */int__write_progmem_safe (void *src, void *dst, int count){ if( !CYG_HAL_STUB_PERMIT_CODE_WRITE( dst, count ) ) return 0; memCount = count; __do_copy_to_progmem((unsigned char*) src, (unsigned char*) dst); return count - memCount; // return number of bytes successfully written}#endif//-----------------------------------------------------------------------------// Target extras?!int __process_target_query(char * pkt, char * out, int maxOut){ return 0 ; }int __process_target_set(char * pkt, char * out, int maxout){ return 0 ; }int __process_target_packet(char * pkt, char * out, int maxout){ return 0 ; }// GDB string output, making sure interrupts are disabled.// This function gets used by some diag output functions.void hal_output_gdb_string(target_register_t str, int string_len){ unsigned long __state; HAL_DISABLE_INTERRUPTS(__state); __output_gdb_string(str, string_len); HAL_RESTORE_INTERRUPTS(__state);}#endif // CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -