📄 nd6.c
字号:
struct in6_ifaddr *ia6, *nia6; struct in6_addrlifetime *lt6; #ifdef __NetBSD__ s = splsoftnet();#else s = splnet();#endif#if defined(__NetBSD__) || (defined(__FreeBSD__) && __FreeBSD__ >= 3) callout_reset(&nd6_timer_ch, nd6_prune * hz, nd6_timer, NULL);#elif defined(__OpenBSD__) timeout_set(&nd6_timer_ch, nd6_timer, NULL); timeout_add(&nd6_timer_ch, nd6_prune * hz);#else timeout(nd6_timer, (caddr_t)0, nd6_prune * hz);#endif ln = llinfo_nd6.ln_next; while (ln && ln != &llinfo_nd6) { struct rtentry *rt; struct sockaddr_in6 *dst; struct llinfo_nd6 *next = ln->ln_next; /* XXX: used for the DELAY case only: */ struct nd_ifinfo *ndi = NULL; if ((rt = ln->ln_rt) == NULL) { ln = next; continue; } if ((ifp = rt->rt_ifp) == NULL) { ln = next; continue; } ndi = &nd_ifinfo[ifp->if_index]; dst = (struct sockaddr_in6 *)rt_key(rt); if (ln->ln_expire > time_second) { ln = next; continue; } /* sanity check */ if (!rt) panic("rt=0 in nd6_timer(ln=%p)\n", ln); if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) panic("rt_llinfo(%p) is not equal to ln(%p)\n", rt->rt_llinfo, ln); if (!dst) panic("dst=0 in nd6_timer(ln=%p)\n", ln); switch (ln->ln_state) { case ND6_LLINFO_INCOMPLETE: if (ln->ln_asked < nd6_mmaxtries) { ln->ln_asked++; ln->ln_expire = time_second + nd_ifinfo[ifp->if_index].retrans / 1000; nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); } else { struct mbuf *m = ln->ln_hold; if (m) { struct ip6_hdr *ip6_in; struct sockaddr_in6 sin6_in; int64_t szoneid, dzoneid; /* * Fake rcvif to make the ICMP error * more helpful in diagnosing for the * receiver. * XXX: should we consider * older rcvif? */ m->m_pkthdr.rcvif = rt->rt_ifp; /* * XXX: for scoped addresses, we should * disambiguate the zone. We should * perhaps hang sockaddr_in6 as aux * data in the mbuf. */ ip6_in = mtod(m, struct ip6_hdr *); szoneid = in6_addr2zoneid(rt->rt_ifp, &ip6_in->ip6_src); dzoneid = in6_addr2zoneid(rt->rt_ifp, &ip6_in->ip6_dst); if (szoneid < 0 || dzoneid < 0) { /* impossible... */ m_freem(m); } else { bzero(&sin6_in, sizeof(sin6_in)); sin6_in.sin6_addr = ip6_in->ip6_src; sin6_in.sin6_scope_id = szoneid; in6_embedscope(&ip6_in->ip6_src, &sin6_in); bzero(&sin6_in, sizeof(sin6_in)); sin6_in.sin6_addr = ip6_in->ip6_dst; sin6_in.sin6_scope_id = dzoneid; in6_embedscope(&ip6_in->ip6_dst, &sin6_in); icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0); } ln->ln_hold = NULL; } next = nd6_free(rt, 0); } break; case ND6_LLINFO_REACHABLE: if (ln->ln_expire) { ln->ln_state = ND6_LLINFO_STALE; ln->ln_expire = time_second + nd6_gctimer; } break; case ND6_LLINFO_STALE: /* Garbage Collection(RFC 2461 5.3) */ if (ln->ln_expire) next = nd6_free(rt, 1); break; case ND6_LLINFO_DELAY: if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { /* We need NUD */ ln->ln_asked = 1; ln->ln_state = ND6_LLINFO_PROBE; ln->ln_expire = time_second + ndi->retrans / 1000; nd6_ns_output(ifp, &dst->sin6_addr, &dst->sin6_addr, ln, 0); } else { ln->ln_state = ND6_LLINFO_STALE; /* XXX */ ln->ln_expire = time_second + nd6_gctimer; } break; case ND6_LLINFO_PROBE: if (ln->ln_asked < nd6_umaxtries) { ln->ln_asked++; ln->ln_expire = time_second + nd_ifinfo[ifp->if_index].retrans / 1000; nd6_ns_output(ifp, &dst->sin6_addr, &dst->sin6_addr, ln, 0); } else { next = nd6_free(rt, 0); } break; } ln = next; } /* expire default router list */ dr = TAILQ_FIRST(&nd_defrouter); while (dr) { if (dr->expire && dr->expire < time_second) { struct nd_defrouter *t; t = TAILQ_NEXT(dr, dr_entry); defrtrlist_del(dr); dr = t; } else { dr = TAILQ_NEXT(dr, dr_entry); } } /* * expire interface addresses. * in the past the loop was inside prefix expiry processing. * However, from a stricter speci-confrmance standpoint, we should * rather separate address lifetimes and prefix lifetimes. */ addrloop: for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { nia6 = ia6->ia_next; /* check address lifetime */ lt6 = &ia6->ia6_lifetime; if (IFA6_IS_INVALID(ia6)) { int regen = 0; /* * If the expiring address is temporary, try * regenerating a new one. This would be useful when * we suspended a laptop PC, then turned it on after a * period that could invalidate all temporary * addresses. Although we may have to restart the * loop (see below), it must be after purging the * address. Otherwise, we'd see an infinite loop of * regeneration. */ if (ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { if (regen_tmpaddr(ia6) == 0) regen = 1; } in6_purgeaddr(&ia6->ia_ifa); if (regen) goto addrloop; /* XXX: see below */ } if (IFA6_IS_DEPRECATED(ia6)) { int oldflags = ia6->ia6_flags; ia6->ia6_flags |= IN6_IFF_DEPRECATED; /* * If a temporary address has just become deprecated, * regenerate a new one if possible. */ if (ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && (oldflags & IN6_IFF_DEPRECATED) == 0) { if (regen_tmpaddr(ia6) == 0) { /* * A new temporary address is * generated. * XXX: this means the address chain * has changed while we are still in * the loop. Although the change * would not cause disaster (because * it's not a deletion, but an * addition,) we'd rather restart the * loop just for safety. Or does this * significantly reduce performance?? */ goto addrloop; } } } else { /* * A new RA might have made a deprecated address * preferred. */ ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; } } /* expire prefix list */ pr = nd_prefix.lh_first; while (pr) { /* * check prefix lifetime. * since pltime is just for autoconf, pltime processing for * prefix is not necessary. */ if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { struct nd_prefix *t; t = pr->ndpr_next; /* * address expiration and prefix expiration are * separate. NEVER perform in6_purgeaddr here. */ prelist_remove(pr); pr = t; } else pr = pr->ndpr_next; } splx(s);}static intregen_tmpaddr(ia6) struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */{ struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *public_ifa6 = NULL; ifp = ia6->ia_ifa.ifa_ifp;#if defined(__bsdi__) || (defined(__FreeBSD__) && __FreeBSD__ < 3) for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next)#else for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)#endif { struct in6_ifaddr *it6; if (ifa->ifa_addr->sa_family != AF_INET6) continue; it6 = (struct in6_ifaddr *)ifa; /* ignore no autoconf addresses. */ if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; /* ignore autoconf addresses with different prefixes. */ if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) continue; /* * Now we are looking at an autoconf address with the same * prefix as ours. If the address is temporary and is still * preferred, do not create another one. It would be rare, but * could happen, for example, when we resume a laptop PC after * a long period. */ if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && !IFA6_IS_DEPRECATED(it6)) { public_ifa6 = NULL; break; } /* * This is a public autoconf address that has the same prefix * as ours. If it is preferred, keep it. We can't break the * loop here, because there may be a still-preferred temporary * address with the prefix. */ if (!IFA6_IS_DEPRECATED(it6)) public_ifa6 = it6; } if (public_ifa6 != NULL) { int e; if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" " tmp addr,errno=%d\n", e); return(-1); } return(0); } return(-1);}/* * Nuke neighbor cache/prefix/default router management table, right before * ifp goes away. */voidnd6_purge(ifp) struct ifnet *ifp;{ struct llinfo_nd6 *ln, *nln; struct nd_defrouter *dr, *ndr; struct nd_prefix *pr, *npr; /* * Nuke default router list entries toward ifp. * We defer removal of default router list entries that is installed * in the routing table, in order to keep additional side effects as * small as possible. */ for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { ndr = TAILQ_NEXT(dr, dr_entry); if (dr->installed) continue; if (dr->ifp == ifp) defrtrlist_del(dr); } for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { ndr = TAILQ_NEXT(dr, dr_entry); if (!dr->installed) continue; if (dr->ifp == ifp) defrtrlist_del(dr); } /* Nuke prefix list entries toward ifp */ for (pr = nd_prefix.lh_first; pr; pr = npr) { npr = pr->ndpr_next; if (pr->ndpr_ifp == ifp) { /* * Previously, pr->ndpr_addr is removed as well, * but I strongly believe we don't have to do it. * nd6_purge() is only called from in6_ifdetach(), * which removes all the associated interface addresses * by itself. * (jinmei@kame.net 20010129) */ prelist_remove(pr); } } /* cancel default outgoing interface setting */ if (nd6_defifindex == ifp->if_index) nd6_setdefaultiface(0); if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ /* refresh default router list */ defrouter_select(); } /* * Nuke neighbor cache entries for the ifp. * Note that rt->rt_ifp may not be the same as ifp, * due to KAME goto ours hack. See RTM_RESOLVE case in * nd6_rtrequest(), and ip6_input(). */ ln = llinfo_nd6.ln_next; while (ln && ln != &llinfo_nd6) { struct rtentry *rt; struct sockaddr_dl *sdl; nln = ln->ln_next; rt = ln->ln_rt; if (rt && rt->rt_gateway && rt->rt_gateway->sa_family == AF_LINK) { sdl = (struct sockaddr_dl *)rt->rt_gateway; if (sdl->sdl_index == ifp->if_index) nln = nd6_free(rt, 0); } ln = nln; }}struct rtentry *nd6_lookup(addr6, create, ifp) struct in6_addr *addr6; int create; struct ifnet *ifp;{ struct rtentry *rt; struct sockaddr_in6 sin6;#ifdef SCOPEDROUTING int64_t zoneid;#endif bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6;#ifdef SCOPEDROUTING if ((zoneid = in6_addr2zoneid(ifp, addr6)) < 0) return(NULL); sin6.sin6_scope_id = zoneid;#endif rt = rtalloc1((struct sockaddr *)&sin6, create#ifdef __FreeBSD__ , 0UL#endif /* __FreeBSD__ */ ); if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { /* * This is the case for the default route. * If we want to create a neighbor cache for the address, we * should free the route for the destination and allocate an * interface route. */ if (create) { RTFREE(rt); rt = 0; } } if (!rt) { if (create && ifp) { int e; /* * If no route is available and create is set, * we allocate a host route for the destination * and treat it like an interface route. * This hack is necessary for a neighbor which can't * be covered by our own prefix. */ struct ifaddr *ifa = ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); if (ifa == NULL) return(NULL); /* * Create a new route. RTF_LLINFO is necessary * to create a Neighbor Cache entry for the * destination in nd6_rtrequest which will be * called in rtrequest via ifa->ifa_rtrequest. */ if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, ifa->ifa_addr, (struct sockaddr *)&all1_sa, (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & ~RTF_CLONING, &rt)) != 0) {#if 0 log(LOG_ERR, "nd6_lookup: failed to add route for a " "neighbor(%s), errno=%d\n", ip6_sprintf(addr6), e);#endif return(NULL); } if (rt == NULL) return(NULL); if (rt->rt_llinfo) { struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; ln->ln_state = ND6_LLINFO_NOSTATE; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -