⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 brent_angle.c

📁 最大似然估计算法
💻 C
📖 第 1 页 / 共 2 页
字号:
#include "timeseries.h"#define SHFT(a,b,c,d) (a)=(b); (b) = (c); (c) = (d);double brent_angle(time_series ts, data_kernel dk, noise_model nm, options op, double *params_mle, double *cov_mle, int return_cov) {	int j, jj, k, i, iter;	int n_params, lwork, liwork, info;	int imax       = 100;	int count      = 0;	int got_answer = 0;	int *iwork, *ipiv;	double a, b, d, etemp, fu, fv, fw, fx, p, q, r, tol1, tol2, u, v, w, x, xm;	double wh_mle, MLE, xmin;	double cn_mle, min_mle;	double F1, F2, F3, F4, second_partial, cross_partial;	double e         = 0.0;	double zeps      = 1.0e-10;	double cgold     = 0.3819660;	double tolerance = 0.01;	double *Eig_vectors, *Eig_values, *C_unit, *C;	double *residuals, *Ioo;	double *cov_wh, *params_wh, *cov_cn, *params_cn;	double *fit, *cov_fit, *data_hat, *work, *radius;	double *start, *params, *cov, *start_value;	double *value, *wh, *cn, *mle, *par;	clock_t time1, time2;        /*****************************************************************/        /* This is for a coloured noise plus white noise so n_params = 2 */        /*****************************************************************/        n_params = 2;        /*******************************************************************************/        /* First of all generate all the relevant matrices for the rest of the simplex */        /*******************************************************************************/        Eig_vectors = (double *) calloc((size_t)(dk.n_data*dk.n_data), sizeof(double));        C           = (double *) calloc((size_t)(dk.n_data*dk.n_data), sizeof(double));        C_unit      = (double *) calloc((size_t)(dk.n_data*dk.n_data), sizeof(double));        Eig_values  = (double *) calloc((size_t) dk.n_data,            sizeof(double));        residuals   = (double *) calloc((size_t) dk.n_data,            sizeof(double));        fit         = (double *) calloc((size_t) dk.n_par,             sizeof(double));        cov_fit     = (double *) calloc((size_t)(dk.n_par*dk.n_par),   sizeof(double));        data_hat    = (double *) calloc((size_t) dk.n_data,            sizeof(double));        lwork = 35 * dk.n_data;        work        = (double *) calloc((size_t) lwork,                sizeof(double));        liwork = 5 * dk.n_data;        iwork       = (int *)    calloc((size_t) liwork,               sizeof(int));        /*************************************************************************/        /* Create the unit power law covariance matrix and find the eigen values */        /* and the eigen vectors                                                 */        /*************************************************************************/		time1 = clock();        create_covariance(nm, ts, op.cov_method, Eig_vectors, 1);        dlacpy_("Full", &dk.n_data, &dk.n_data, Eig_vectors, &dk.n_data, C_unit, &dk.n_data);        dsyev_("V","L",&dk.n_data,Eig_vectors,&dk.n_data,Eig_values,work,&lwork,&info);        if (op.verbose) fprintf(op.fpout, " work(1)  = %f\n", work[0]);        if (op.verbose) fprintf(op.fpout, " info     = %d\n", info);        free(iwork);        free(work);        time2 = clock();        if (op.verbose) {                fprintf(op.fpout, " Time taken to create covariance matrix and compute eigen value and vectors : ");                fprintf(op.fpout, "%f seconds\n", ((double) (time2-time1)) / CLOCKS_PER_SEC );        }        /***********************************************************/        /* Find the white noise only and coloured noise only mle's */        /***********************************************************/        i = dk.n_par + 1;        cov_wh    = (double *) calloc((size_t)(i*i), sizeof(double));        cov_cn    = (double *) calloc((size_t)(i*i), sizeof(double));        params_wh = (double *) calloc((size_t) i,    sizeof(double));        params_cn = (double *) calloc((size_t) i,    sizeof(double));        wh_mle = est_line_WH_only(dk, op, params_wh, cov_wh);        cn_mle = cats_CN_only(dk, C_unit, Eig_values, Eig_vectors, params_cn, cov_cn, op.speed);        if (op.verbose) {		fprintf(op.fpout, " wh_only = %.8f (%.4f),",  params_wh[dk.n_par],  wh_mle); 		fprintf(op.fpout, " cn_only = %.8f (%.4f)\n", params_cn[dk.n_par], -cn_mle);	}	/***********************************************************************/	/* Now Begin the Brent one-dimensional minimisation based on the angle */	/***********************************************************************/	start_value  = (double *) calloc((size_t)(3),       sizeof(double));		start_value[0] = 0.0;	start_value[1] = 45.0;	start_value[2] = 90.0;	if (op.verbose) {		fprintf(op.fpout, " Starting a one-dimensional minimisation : initial angle %5.2f\n", start_value[1]);	}	a = (start_value[0] < start_value[2] ? start_value[0] : start_value[2]);	b = (start_value[0] > start_value[2] ? start_value[0] : start_value[2]);	x = w = v = start_value[1];		start      = (double *) calloc((size_t)(2),       sizeof(double));	radius     = (double *) calloc((size_t)(1),       sizeof(double));	mle        = (double *) calloc((size_t)(200),     sizeof(double));	value      = (double *) calloc((size_t)(200),     sizeof(double));	wh         = (double *) calloc((size_t)(200),     sizeof(double));	cn         = (double *) calloc((size_t)(200),     sizeof(double));	/* params     = (double *) calloc((size_t)(dk.n_par+1),                sizeof(double));	cov        = (double *) calloc((size_t)((dk.n_par+1)*(dk.n_par+1)), sizeof(double)); */	j = 0;	if (op.speed == 3) {		for (k = 0; k < dk.n_data; k++) residuals[k] = dk.d[k];	} else {		start[0] = tan(x*M_PI/180.0);		start[1] = 1.0;		cov_scale(C_unit,dk.n_data,start,C);		linefit_all_fast(dk.A,dk.d,C,dk.n_data,dk.n_par,fit,cov_fit,data_hat);		for (k = 0; k < dk.n_data; k++) residuals[k] = dk.d[k] - data_hat[k];	}	MLE = exact_radius(dk.n_data, Eig_values, Eig_vectors, residuals, x*M_PI/180.0, radius); 	value[j] = x; mle[j] = MLE; wh[j] = radius[0] * sin(x*M_PI/180.0); cn[j] = radius[0] * cos(x*M_PI/180.0); j++;		if (op.verbose) {		fprintf(op.fpout, " angle = %9.6f ", x); 		fprintf(op.fpout, "mle = %13.8f ", MLE);		fprintf(op.fpout, "radius = %12.6f ", radius[0]*1000.0);		fprintf(op.fpout, "wh = %12.6f ",  wh[j-1]*1000.0);		fprintf(op.fpout, "cn = %12.6f\n", cn[j-1]*1000.0);	}	fw=fv=fx=-MLE;	for (iter=0; iter < imax; iter++) {		xm   = 0.5*(a+b);		tol2 = 2.0*(tol1=tolerance*fabs(x)+zeps);		if (fabs(x-xm) <= (tol2-0.5*(b-a))) {			got_answer = 1;			xmin = x;			break;		}		if (fabs(e) > tol1) {			r = (x-w)*(fx-fv);			q = (x-v)*(fx-fw);			p = (x-v)*q-(x-w)*r;			q = 2.0 * (q-r);			if (q > 0.0) p = -p;			q = fabs(q);			etemp = e;			e = d;			if (fabs(p) >= fabs(0.5 * q* etemp) || p <= q*(a-x) || p >= q * (b-x)) {				d = cgold*(e=(x >= xm ? a-x : b-x));			} else {				d = p / q;				u = x+d;				if (u-a < tol2 || b-u < tol2) {					d = (xm-x < 0.0 ? -fabs(tol1) : fabs(tol1) );				}			}		} else {			d = cgold*(e=(x >= xm ? a-x : b-x));		}		u = (fabs(d) >= tol1 ? x+d : x + (d < 0.0 ? -fabs(tol1) : fabs(tol1) ));		if (op.verbose) fprintf(op.fpout, " Next choice of angle = %9.6f\n", u);		if (op.speed == 3) {			for (k = 0; k < dk.n_data; k++) residuals[k] = dk.d[k];		} else if (op.speed <= 1) {			start[0] = tan(u*M_PI/180.0);			start[1] = 1.0;			cov_scale(C_unit,dk.n_data,start,C);			linefit_all_fast(dk.A,dk.d,C,dk.n_data,dk.n_par,fit,cov_fit,data_hat);			for (k = 0; k < dk.n_data; k++) residuals[k] = dk.d[k] - data_hat[k];		}		MLE = exact_radius(dk.n_data, Eig_values, Eig_vectors, residuals, u*M_PI/180.0, radius); 		value[j] = u; mle[j] = MLE; wh[j] = radius[0] * sin(u*M_PI/180.0); cn[j] = radius[0] * cos(u*M_PI/180.0); j++;		if (op.verbose) {			fprintf(op.fpout, " angle = %9.6f ", u); 			fprintf(op.fpout, "mle = %13.8f ", MLE);			fprintf(op.fpout, "radius = %12.6f ", radius[0]*1000.0);			fprintf(op.fpout, "wh = %12.6f ",  wh[j-1]*1000.0);			fprintf(op.fpout, "cn = %12.6f\n", cn[j-1]*1000.0); 		}		fu = -MLE;		if (fu <= fx) {			if (u >= x) a = x; else b = x;			SHFT(v,w,x,u)			SHFT(fv,fw,fx,fu)		} else {			if (u < x) a = u; else b = u;			if (fu <= fw || w == x) {				v = w;				w = u;				fv = fw;				fw = fu;			} else if (fu <= fv || v == x || v == w) {					v = u;				fv = fu;			}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -