📄 sa_ex7_15b.m
字号:
sa% ESPRIT AOA estimation for a M = 4 element array with noise variance = .1M = 4; % number of array elementsD = 2; % number of signalssig2 = .1; % noise varianceth1 = -10*pi/180; % angle of arrival 1th2 = 20*pi/180; % angle of arrival 2i = 1:M;a1 = exp(1j*(i-1)*pi*sin(th1));a2 = exp(1j*(i-1)*pi*sin(th2));A=[a1.' a2.']; % calculate matrix of steering vectors for the D signalsRss = [1 0;0 1]; Rxx = A*Rss*A'+sig2*eye(M);[V,Dia]=eig(Rxx); % find eigenvalues and eigenvectors of Rrr[Y,Index]=sort(diag(Dia)); % sorts the eigenvalues from least to greatestES=V(:,Index(M-D+1:M)); % calculate the signal subspace matrix of eigenvectors % using the sorting done in the previous line E1=ES(1:M/2+1,:); % construct the signal subspace form the first K rows of ES (K = M/2+1)E2=ES(M/2:M,:); % construct the signal subspace from the last K rows of ESC=[E1';E2']*[E1 E2];[EC,tmp]=eig(C); % Perform the eigendecomposition on the matrix CE12=EC(1:2,3:4); % construct the E12 submatrixE22=EC(3:4,3:4); % construct the E22 submatrixPSI=-E12*inv(E22); % estimate PSI, the rotation operator[Vp,Ep]=eig(PSI); % find the eigenvalues and eigenvectors of rotation operator PSIe=diag(Ep);angs=asin(angle(e)/pi)*180/pi % find the angles associated with the roots
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -