⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tx_client_fifo_8.v

📁 Xilinx Virtex5 SGMII高速串行通信例程。
💻 V
📖 第 1 页 / 共 3 页
字号:
end // gen_fd_addr                           // full duplex address counters
endgenerate
   
  //---------------------------------------------------------------------------
generate if (FULL_DUPLEX_ONLY != 1) begin : gen_hd_addr
  // read address is incremented when read enable signal has been asserted
  always @(posedge rd_clk)
  begin
     if (rd_sreset == 1'b1)
        rd_addr <= 12'b0;
     else if (rd_enable == 1'b1)
        if (rd_addr_reload == 1'b1)
           rd_addr <= rd_dec_addr;
        else if (rd_start_addr_reload == 1'b1)
           rd_addr <= rd_start_addr;
        else if (rd_addr_inc == 1'b1)
           rd_addr <= rd_addr + 1;
  end

  always @(posedge rd_clk)
  begin
     if (rd_sreset == 1'b1)
        rd_start_addr <= 12'b0;
     else if (rd_enable == 1'b1)
        if (rd_start_addr_load == 1'b1)
           rd_start_addr <= rd_addr - 4;
  end

  // Collision window expires after MAC has been transmitting for required slot
  // time.  This is 512 clock cycles at 1G.  Also if the end of frame has fully
  // been transmitted by the mac then a collision cannot occur.
  // this collision expire signal goes high at 768 cycles from the start of the
  // frame.
  // inefficient for short frames, however should be enough to prevent fifo
  // locking up.
  always @(posedge rd_clk)
  begin
     if (rd_sreset == 1'b1)
        rd_col_window_expire <= 1'b0;
     else if (rd_enable == 1'b1)
        if (rd_transmit_frame == 1'b1)
           rd_col_window_expire <= 1'b0;
        else if (rd_slot_timer[9:8] == 2'b11)
           rd_col_window_expire <= 1'b1;
  end

  assign rd_idle_state = (rd_state == IDLE_s) ? 1'b1 : 1'b0;
  
  always @(posedge rd_clk) 
  begin
     if (rd_enable == 1'b1)
        begin
           rd_col_window_pipe[0] <= rd_col_window_expire & rd_idle_state;
           if (rd_txfer_en == 1'b1)
              rd_col_window_pipe[1] <= rd_col_window_pipe[0];
        end
  end
  
  always @(posedge rd_clk)
  begin
     if (rd_sreset == 1'b1)         // will not count until after first
                                    // frame is sent.
        rd_slot_timer <= 10'b0;
     else if (rd_enable == 1'b1)
        if (rd_transmit_frame == 1'b1)  // reset counter
           rd_slot_timer <= 10'b0;
        // do not allow counter to role over.
        // only count when frame is being transmitted.
        else if (rd_slot_timer != 10'b1111111111)
           rd_slot_timer <= rd_slot_timer + 1;           
  end

  
end // gen_hd_addr                           // half duplex address counters
endgenerate

  always @(posedge rd_clk)
  begin
     if (rd_sreset == 1'b1)
           rd_dec_addr <= 12'b0;
     else if (rd_enable == 1'b1)
        if (rd_addr_inc == 1'b1)        
           rd_dec_addr <= rd_addr - 1;
  end
  
  //---------------------------------------------------------------------------
  always @(posedge rd_clk)
  begin
     if (rd_sreset == 1'b1)
        begin
           rd_bram_u <= 1'b0;
           rd_bram_u_reg <= 1'b0;
	end
     else if (rd_enable == 1'b1)
        if (rd_addr_inc == 1'b1)
	   begin
              rd_bram_u <= rd_addr[11];
              rd_bram_u_reg <= rd_bram_u;
           end
  end

  //---------------------------------------------------------------------------
  // Data Pipelines
  //---------------------------------------------------------------------------
  // register input signals to fifo
  // no reset to allow srl16 target
  always @(posedge wr_clk)
  begin
     wr_data_pipe[0] <= wr_data;
     if (wr_accept_pipe[0] == 1'b1)
        wr_data_pipe[1] <= wr_data_pipe[0];
     if (wr_accept_pipe[1] == 1'b1)
        wr_data_bram    <= wr_data_pipe[1];
  end
   
  // no reset to allow srl16 target
  always @(posedge wr_clk)
  begin
     wr_sof_pipe[0] <= !wr_sof_n;
     if (wr_accept_pipe[0] == 1'b1)
        wr_sof_pipe[1] <= wr_sof_pipe[0];
  end

  always @(posedge wr_clk)
  begin
     if (wr_sreset == 1'b1)
        begin
           wr_accept_pipe[0] <= 1'b0;
           wr_accept_pipe[1] <= 1'b0;
           wr_accept_bram    <= 1'b0;
        end
     else
        begin
           wr_accept_pipe[0] <= !wr_src_rdy_n & !wr_dst_rdy_int_n;
           wr_accept_pipe[1] <= wr_accept_pipe[0];
           wr_accept_bram    <= wr_accept_pipe[1];
        end
  end
  
  always @(posedge wr_clk)
  begin
     wr_eof_pipe[0] <= !wr_eof_n;
     if (wr_accept_pipe[0] == 1'b1)
        wr_eof_pipe[1] <= wr_eof_pipe[0];
     if (wr_accept_pipe[1] == 1'b1)
        wr_eof_bram[0] <= wr_eof_pipe[1];
  end

  // register data outputs from bram
  // no reset to allow srl16 target
  always @(posedge rd_clk)
  begin
     if (rd_enable == 1'b1)
        if (rd_en == 1'b1)
	   begin
              rd_data_pipe_u <= rd_data_bram_u;
              rd_data_pipe_l <= rd_data_bram_l;
              if (rd_bram_u_reg == 1'b1)
                 rd_data_pipe <= rd_data_pipe_u;
              else
                 rd_data_pipe <= rd_data_pipe_l;
           end
  end

   // register data outputs from bram
  // no reset to allow srl16 target
  always @(posedge rd_clk)
  begin
     if (rd_enable == 1'b1)
        if (rd_en == 1'b1)
	   begin
              if (rd_bram_u == 1'b1)
                 rd_eof_pipe <= rd_eof_bram_u[0];
              else
                 rd_eof_pipe <= rd_eof_bram_l[0];
              rd_eof <= rd_eof_pipe;
              rd_eof_reg <= rd_eof | rd_eof_pipe;
           end
  end

  //---------------------------------------------------------------------------
generate if (FULL_DUPLEX_ONLY != 1) begin : gen_hd_input
  // register the collision and retransmit signals
  always @(posedge rd_clk)
  begin
     if (rd_enable == 1'b1)
        rd_drop_frame <= tx_collision & !tx_retransmit;      
  end

  always @(posedge rd_clk)
  begin
     if (rd_enable == 1'b1)
        rd_retransmit <= tx_collision & tx_retransmit;
  end

end // gen_hd_input                        // half duplex register input
endgenerate
  
  //---------------------------------------------------------------------------
  // Fifo full functionality
  //---------------------------------------------------------------------------
  // when full duplex full functionality is difference between read and write addresses.
  // when in half duplex is difference between read start and write addresses.
  // Cannot use gray code this time as the read address and read start addresses jump by more than 1

  // generate an enable pulse for the read side every 16 read clocks.  This provides for the worst case
  // situation where wr clk is 20Mhz and rd clk is 125 Mhz.
  always @(posedge rd_clk)
  begin
     if (rd_sreset == 1'b1)
        rd_16_count <= 4'b0;
     else if (rd_enable == 1'b1)
        rd_16_count <= rd_16_count + 1;
  end

  assign rd_txfer_en = (rd_16_count == 4'b1111) ? 1'b1 : 1'b0;

  // register the start address on the enable pulse
  always @(posedge rd_clk)
  begin
     if (rd_sreset == 1'b1)
        rd_addr_txfer <= 12'b0;
     else if (rd_enable == 1'b1)
        begin
        if (rd_txfer_en == 1'b1)
           rd_addr_txfer <= rd_start_addr;
        end
  end

  // generate a toggle to indicate that the address has been loaded.
  always @(posedge rd_clk)
  begin
     if (rd_sreset == 1'b1)
        rd_txfer_tog <= 1'b0;
     else if (rd_enable == 1'b1)
        begin
        if (rd_txfer_en == 1'b1)
           rd_txfer_tog <= !rd_txfer_tog;
        end
  end

  // pass the toggle to the write side
  always @(posedge wr_clk)
  begin
     if (wr_sreset == 1'b1)
        begin
           wr_txfer_tog <= 1'b0;
           wr_txfer_tog_sync <= 1'b0;
           wr_txfer_tog_delay <= 1'b0;
        end
     else
        begin
           wr_txfer_tog <= rd_txfer_tog;
           wr_txfer_tog_sync <= wr_txfer_tog;
           wr_txfer_tog_delay <= wr_txfer_tog_sync;
        end
  end

  // generate an enable pulse from the toggle, the address should have 
  // been steady on the wr clock input for at least one clock
  assign wr_txfer_en = wr_txfer_tog_delay ^ wr_txfer_tog_sync;

  // capture the address on the write clock when the enable pulse is high.
  always @(posedge wr_clk)
  begin
     if (wr_sreset == 1'b1)
        wr_rd_addr <= 12'b0;
     else if (wr_txfer_en == 1'b1)
        wr_rd_addr <= rd_addr_txfer;
  end


  // Obtain the difference between write and read pointers
  always @(posedge wr_clk)
  begin
     if (wr_sreset == 1'b1)
        wr_addr_diff <= 12'b0;
     else 
        wr_addr_diff <= wr_rd_addr - wr_addr;
  end


  // Detect when the FIFO is full
  always @(posedge wr_clk)
  begin 
     if (wr_sreset == 1'b1)
        wr_fifo_full <= 1'b0;
     else
        // The FIFO is considered to be full if the write address
        // pointer is within 1 to 3 of the read address pointer.
        if (wr_addr_diff[11:4] == 8'b0 && wr_addr_diff[3:2] != 2'b0)
           wr_fifo_full <= 1'b1;
        else
           wr_fifo_full <= 1'b0;
  end

  // memory overflow occurs when the fifo is full and there are no frames
  // available in the fifo for transmission.  If the collision window has
  // expired and there are no frames in the fifo and the fifo is full, then the
  // fifo is in an overflow state.  we must accept the rest of the incoming
  // frame in overflow condition.

generate if (FULL_DUPLEX_ONLY == 1) begin : gen_fd_ovflow
     // in full duplex mode, the fifo memory can only overflow if the fifo goes
     // full but there is no frame available to be retranmsitted
     // do not allow to go high when the frame count is being updated, ie wr_store_frame is asserted.
     assign wr_fifo_overflow = (wr_fifo_full == 1'b1 && wr_frame_in_fifo == 1'b0 
                                   && wr_eof_state == 1'b0 && wr_eof_state_reg == 1'b0) ? 1'b1 : 1'b0;
end // gen_fd_ovflow
endgenerate

generate if (FULL_DUPLEX_ONLY != 1) begin : gen_hd_ovflow
    // register wr col window to give address counter sufficient time to update.
     // do not allow to go high when the frame count is being updated, ie wr_store_frame is asserted.
    assign wr_fifo_overflow = (wr_fifo_full == 1'b1 && wr_frame_in_fifo == 1'b0 
                                  && wr_eof_state == 1'b0 && wr_eof_state_reg == 1'b0 && wr_col_window_expire == 1'b1) ? 1'b1 : 1'b0;

    // register rd_col_window signal
    // this signal is long, and will remain high until overflow functionality
    // has finished, so save just to register the once.
    always @(posedge wr_clk)
    begin  // process
       if (wr_sreset == 1'b1)
	  begin
             wr_col_window_pipe[0] <= 1'b0;
             wr_col_window_pipe[1] <= 1'b0;
             wr_col_window_expire  <= 1'b0;
	  end
       else
 	  begin
             if (wr_txfer_en == 1'b1)
                wr_col_window_pipe[0] <= rd_col_window_pipe[1];
             wr_col_window_pipe[1] <= wr_col_window_pipe[0];
             wr_col_window_expire <= wr_col_window_pipe[1];
          end
    end
                        
end // gen_hd_ovflow
endgenerate


  
  //--------------------------------------------------------------------
  // Create FIFO Status Signals in the Write Domain
  //--------------------------------------------------------------------

  // The FIFO status signal is four bits which represents the occupancy
  // of the FIFO in 16'ths.  To generate this signal we therefore only
  // need to compare the 4 most significant bits of the write address
  // pointer with the 4 most significant bits of the read address 
  // pointer.
  
  // The 4 most significant bits of the write pointer minus the 4 msb of
  // the read pointer gives us our FIFO status.
  always @(posedge wr_clk)
  begin 
     if (wr_sreset == 1'b1)
        wr_fifo_status <= 4'b0;
     else
        if (wr_addr_diff == 12'b0)
           wr_fifo_status <= 4'b0;
        else
	   begin
              wr_fifo_status[3] <= !wr_addr_diff[11];
              wr_fifo_status[2] <= !wr_addr_diff[10];
              wr_fifo_status[1] <= !wr_addr_diff[9];
              wr_fifo_status[0] <= !wr_addr_diff[8];
           end
  end

  //---------------------------------------------------------------------------
  // Memory
  //---------------------------------------------------------------------------
  assign rd_en_bram = rd_en & rd_enable_delay2;

  // Block Ram for lower address space (rx_addr(11) = 1'b0)
  defparam ramgen_l.WRITE_MODE_A = "READ_FIRST";
  defparam ramgen_l.WRITE_MODE_B = "READ_FIRST";  
  RAMB16_S9_S9 ramgen_l (
      .WEA  (wr_en_l),
      .ENA  (VCC),
      .SSRA (wr_sreset),
      .CLKA (wr_clk),
      .ADDRA(wr_addr[10:0]),
      .DIA  (wr_data_bram),
      .DIPA (wr_eof_bram),
      .WEB  (GND),
      .ENB  (rd_en_bram),
      .SSRB (rd_sreset),
      .CLKB (rd_clk),
      .ADDRB(rd_addr[10:0]),
      .DIB  (GND_BUS[7:0]),
      .DIPB (GND_BUS[0:0]),
      .DOA  (),
      .DOPA (),
      .DOB  (rd_data_bram_l),
      .DOPB (rd_eof_bram_l));

    // Block Ram for lower address space (rx_addr(11) = 1'b0)
  defparam ramgen_u.WRITE_MODE_A = "READ_FIRST";
  defparam ramgen_u.WRITE_MODE_B = "READ_FIRST";
  RAMB16_S9_S9 ramgen_u (
      .WEA  (wr_en_u),
      .ENA  (VCC),
      .SSRA (wr_sreset),
      .CLKA (wr_clk),
      .ADDRA(wr_addr[10:0]),
      .DIA  (wr_data_bram),
      .DIPA (wr_eof_bram),
      .WEB  (GND),
      .ENB  (rd_en_bram),
      .SSRB (rd_sreset),
      .CLKB (rd_clk),
      .ADDRB(rd_addr[10:0]),
      .DIB  (GND_BUS[7:0]),
      .DIPB (GND_BUS[0:0]),
      .DOA  (),
      .DOPA (),
      .DOB  (rd_data_bram_u),
      .DOPB (rd_eof_bram_u));



endmodule

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -