⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mog_dd.m

📁 数据挖掘的工具箱,最新版的,希望对做这方面研究的人有用
💻 M
字号:
%MOG_DD Mixture of Gaussians data description%%       W = MOG_DD(A,FRACREJ,N)%% Training of a mixture of Gaussians, with N Gaussians.%% The algorithm was inspired from NetLab, Bishop but changed very much.% For a given number of gaussians, the EM procedure optimizes the size and% the place of the gaussians.%%       W = MOG_DD(A,FRACREJ,N,CTYPE)%% By setting ctype, the covariance structure of the covariance can be% set. There are three possibilities:%      CTYPE = 'sphr'  : diagonal cov. matrix with equal values%      CTYPE = 'diag'  : diagonal cov. matrix%      CTYPE = 'full'  : full cov. matrix%%% Required functions: mogEM and mogP% Copyright: D.M.J. Tax, R.P.W. Duin, davidt@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction W = mog_dd(a,fracrej,n,ctype,reg,numiters)if (nargin<6)	numiters = 25;endif (nargin<5)	reg = 0.1;endif (nargin<4)	ctype = 'sphr';endif (nargin<3)	n = 5;endif (nargin<2)	fracrej = 0.05;endif (nargin<1)|isempty(a)	W = mapping(mfilename,{fracrej,n,ctype,reg,numiters});	W = setname(W,'Mixture of Gaussians');	returnendif isa(fracrej,'double')           %training	a = +target_class(a);     % only use the target class	[m,k] = size(a);	% Train it	[means, covs, priors] = mogEM(a, n, ctype, reg, numiters);	% Obtain the threshold on the training set:	d = sum(mogP(a,means,covs,priors),2);	thr = dd_threshold(d,fracrej);	%  and save all useful data:	W.m = means;	W.c = covs;	W.p = priors;	W.threshold = thr;	W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2);	W = setname(W,'Mixture of Gaussians');else                               %testing	W = getdata(fracrej);  % unpack	m = size(a,1);	%compute:	out = sum(mogP(+a,W.m,W.c,W.p),2);	newout = [out repmat(W.threshold,m,1)];	W = setdat(a,newout,fracrej);endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -