⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 parzen_dd.m

📁 数据挖掘的工具箱,最新版的,希望对做这方面研究的人有用
💻 M
字号:
%PARZEN_DD Parzen data description.% %       W = parzen_dd(A,fracrej)% % Fit a Parzen density on dataset A. The threshold is put such that% fracrej of the target objects is rejected.% %       W = parzen_dd(A,fracrej,h)% % If the width parameter is known, it can be given as third parameter,% otherwise it is optimized using parzenml.% % See also datasets, mappings, dd_roc% Copyright: D.M.J. Tax, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands  function W = parzen_dd(a,fracrej,h)if nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) 	W = mapping(mfilename,{fracrej});	W = setname(W,'Parzen density data description');	returnendif ~ismapping(fracrej)           %training	% Make sure a is an OC dataset:	a = target_class(a);	k = size(a,2);	% Train it:	if nargin<3		h = parzenml(+a);	end	%DXD parzendc expects at least 2 classes nowadays, that's ok, we	%now just have to do it ourselves:	%w = parzendc(a,h);	w = mapping('parzen_map','trained',{a,h}, getlablist(a),k,1);	% Obtain the threshold:	d = +(a*w);	thr = dd_threshold(d,fracrej);	%and save all useful data:	W.w = w;	%(Strictly speaking h is already stored in w, but for inspection	%reasons I still want to have it here:)	W.h = h;	W.threshold = thr;	W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2);	W = setname(W,'Parzen density data description');else                               %testing	W = getdata(fracrej);  % unpack	m = size(a,1);	%compute:	out = +(a*W.w);	newout = [out, repmat(W.threshold,m,1)];	W = setdat(a,newout,fracrej);endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -