⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcd_gauss_dd.m

📁 数据挖掘的工具箱,最新版的,希望对做这方面研究的人有用
💻 M
字号:
%MCD_GAUSS_DD Minimum Covariance Determinant Robust Gaussian data description.% %       W = MCD_GAUSS_DD(A,FRACREJ)% % Fit a Minimum-Covariance-Determinant Gaussian density on dataset A. The% algorithm is taken from :%%  Rousseeuw, P.J. and Van Driessen, Katrien, "A fast algorithm for%  the minimum covariance determinant estimator", 15 Dec. 1998% % See also: datasets, mappings, dd_roc, fastmcd, gauss_dd% Copyright: D. Tax, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands  function [W,out] = mcd_gauss_dd(x,fracrej)if nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(x) 	W = mapping(mfilename,{fracrej});	W = setname(W,'Minimum Covariance Determinant Gaussian');	returnendif isa(fracrej,'double')           %training	x = +target_class(x);     % only use the target class	dim = size(x,2);	% call the function:	options.alpha = 1-fracrej;	options.lts = []; % display nothing!	res = fastmcd(x,options);	% obtain the threshold:	p = mahaldist(x,res.center,res.cov,-1);	thr = dd_threshold(p,1-fracrej);	%and save all useful data:	W.m = res.center;	W.s = res.cov;	W.threshold = thr;	%W = mapping(mfilename,'trained',W,str2mat('target','outlier'),dim,2);	% actually, we can just call 'gauss_dd' now!	W = mapping('gauss_dd','trained',W,str2mat('target','outlier'),dim,2);	W = setname(W,'Minimum Covariance Determinant Gaussian');else	error('Evaluation of mcd_gauss_dd is treated by gauss_dd!');endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -