📄 kcenter_dd.m
字号:
%KCENTER_DD k-center data description.% % W = kcenter_dd(A,fracrej,K)% % Train a k-center method with K prototypes on dataset A.% % See also datasets, mappings, dd_roc% Copyright: D.M.J. Tax, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands function [W,out] = kcenter_dd(a,fracrej,K,nrtries)if nargin < 4, nrtries = 25; endif nargin < 3 | isempty(K), K = 5; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) % empty nndd W = mapping(mfilename,{fracrej,K,nrtries}); W = setname(W,'K-Centers data description'); returnendif ~ismapping(fracrej) %training a = +target_class(a); % make sure a is an OC dataset k = size(a,2); % train it: D = sqrt(sqeucldistm(a,a)); [lab,J,dmin] = kcentres(D,K,nrtries); x = a(J,:); % obtain the threshold: d = sqrt(min(sqeucldistm(a,x),[],2)); thr = dd_threshold(d,1-fracrej); %and save all useful data: W.x = x; W.threshold = thr; W.scale = mean(d); W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2); W = setname(W,'K-Centers data description');else %testing W = getdata(fracrej); % unpack m = size(a,1); %compute: out = [sqrt(min(sqeucldistm(+a,W.x),[],2)) repmat(W.threshold,m,1)]; newout = dist2dens(out,W.scale); W = setdat(a,newout,fracrej);endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -