⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dd_roc.m

📁 数据挖掘的工具箱,最新版的,希望对做这方面研究的人有用
💻 M
字号:
function e = dd_roc(a,w)%DD_ROC Receiver Operating Characteristic curve %%        E = DD_ROC(A,W)%        E = DD_ROC(A*W)%        E = A*W*DD_ROC%% Find for a (data description) method W the Receiver Operating% Characteristic curve over dataset A.  The results are returned in E.% The first column gives the fraction of target objects rejected, the% second column the fraction of outlier objects accepted.%% NOTE: people typically use this ROC definition: false positive FP% (outlier accepted) on the x-axis, and true positive TP (target% accepted) on the y-axis. You can retrieve that by using:%   newe = [e(:,2) 1-e(:,1)]% I choose to define E consistent, i.e. both numbers indicate% 'errors'. In the routines plotroc and dd_auc the variable E is% automatically recomputed to get the 'standard' plots and AUC values.%% See also: plotroc, dd_auc, dd_error, simpleroc.%%@article{Metz1978,%	author = {Metz, C.E.},%	title = {Basic principles of {ROC} analysis},%	journal = {Seminars in Nuclear Medicine},%	year = {1978},%	volume = {VIII},%	number = {4},%	month = {October}%}% Copyright: D.M.J. Tax, R.P.W. Duin, davidt@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% Use the same setup as testc% When no input arguments are given, return an empty mappingif nargin==0		e = mapping(mfilename,'fixed');elseif nargin == 1	% Now we should have a mapped dataset, so the real work is done!	% for evaluation, we need both target and outlier objects:	dataset(a);	[It,Io] = find_target(a);	if isempty(It)		error('Dataset A does not contain target objects');	end	if isempty(Io)		error('Dataset A does not contain outlier objects');	end	% get the labels of A:	truelab = zeros(size(a,1),1);	truelab(It) = 1;	% check if we have sane results:	if ~all(isfinite(+a))		error('Some strange classifier outputs: can you check your classifier?');	end	% first find out where the output for the target objects are stored:	tcolumn = strmatch('target ',getfeatlab(a));	if tcolumn~=1		% then we are probably using 'normal' prtools classifiers, and in		% that case, the outputs should be normalized		if abs(sum(sum(+a)) - size(a,1)) > 1e-9			error('Are the classifier outputs normalized?');	  end	end	% and now extract the required column 'resemblance to target set':	a = +a(:,tcolumn);	% now the real computation is done:	e = simpleroc(a,truelab);else	% Separate mapping and dataset are given, so we have to map the data	% first:	ismapping(w);	istrained(w);	e = feval(mfilename,a*w);endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -