📄 kmeans_dd.m
字号:
%KMEANS_DD k-means data description.% % W = KMEANS_DD(A,FRACREJ,K)% % Train a k-means method with K prototypes on dataset A. Parameter% fracrej gives the fraction of the target set which will be rejected.% % Optionally, one may give the error tolerance as last argument as% stopping criterion.% % See also datasets, mappings, dd_roc% Copyright: D. Tax, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands function [W,out] = kmeans_dd(a,fracrej,K,errtol)if nargin < 4, errtol = 1e-5; endif nargin < 3 | isempty(K), K = 5; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) % empty dd W = mapping('kmeans_dd',{fracrej,K,errtol}); W = setname(W,'K-Means data description'); returnendif ~ismapping(fracrej) %training a = +target_class(a); % make sure a is an OC dataset k = size(a,2); % train it: [labs,w] = mykmeans(a,K,errtol); % obtain the threshold: d = sqrt(min(sqeucldistm(a,w),[],2)); if (size(d,2)~=1) d = d'; end thr = dd_threshold(d,1-fracrej); %and save all useful data: W.w = w; W.threshold = thr; W.scale = mean(d); W = mapping('kmeans_dd','trained',W,str2mat('target','outlier'),k,2); W = setname(W,'K-Means data description');else %testing W = getdata(fracrej); % unpack m = size(a,1); %compute: out = [sqrt(min(sqeucldistm(+a,W.w),[],2)) repmat(W.threshold,m,1)]; %newout = dist2dens(out,W.scale); newout = -out; W = setdat(a,newout,fracrej);endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -