📄 gauss_dd.m
字号:
%GAUSS_DD Gaussian data description.% % W = gauss_dd(A,fracrej,r)% % Fit a Gaussian density on dataset A. If requested, the r can be% given to add some regularization to the estimated covariance matrix:% sig_new = (1-r)*sig + r*eye(dim). Default r = 0.01!!! (might be% dangerous!)%% This version acutally computes just the Mahalanobis distance to the% mean. This should avoid underflows at the computation of a real Gaussian% density (especially problematic in high dimensional spaces).%% See also datasets, mappings, dd_roc% Copyright: D.M.J. Tax, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands function W = gauss_dd(a,fracrej,r)if nargin < 3, r = 0.01; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) W = mapping(mfilename,{fracrej}); W = setname(W,'Gaussian one-class classifier'); returnendif ~ismapping(fracrej) %training a = target_class(a); % only use the target class k = size(a,2); % Train it: [mu,sig] = meancov(+a); sig = (1-r)*sig + r*eye(k); % Obtain the threshold: d = mahaldist(a,mu,sig,-1); thr = dd_threshold(d,1-fracrej); %and save all useful data: W.m = +mu; W.s = sig; W.threshold = thr; W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2); W = setname(W,'Gaussian one-class classifier');else %testing % Extract the data: W = getdata(fracrej); m = size(a,1); % Compute the Mahalanobis distance (to avoid problems in the non-essential % normalization factor): newout = -[mahaldist(+a,W.m,W.s,-1) repmat(W.threshold,m,1)]; W = setdat(a,newout,fracrej);endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -