📄 k_means.m
字号:
function [features, targets, label] = k_means(train_features, train_targets, Nmu, region, plot_on)%Reduce the number of data points using the k-means algorithm%Inputs:% train_features - Input features% train_targets - Input targets% Nmu - Number of output data points% region - Decision region vector: [-x x -y y number_of_points]% plot_on - Plot stages of the algorithm%%Outputs% features - New features% targets - New targets% label - The labels given for each of the original featuresif (nargin < 5), plot_on = 0;end[D,L] = size(train_features);dist = zeros(Nmu,L);label = zeros(1,L);%Initialize the mu'smu = randn(D,Nmu);mu = sqrtm(cov(train_features'))*mu + mean(train_features')'*ones(1,Nmu);old_mu = zeros(D,Nmu);if (Nmu == 1), mu = mean(train_features')'; label = ones(1,L);else while (sum(sum(mu == old_mu)) == 0), old_mu = mu; %Classify all the features to one of the mu's for i = 1:Nmu, dist(i,:) = sum((train_features - mu(:,i)*ones(1,L)).^2); end %Label the points [m,label] = min(dist); %Recompute the mu's for i = 1:Nmu, mu(:,i) = mean(train_features(:,find(label == i))')'; end if (plot_on == 1), plot_process(mu) end endend %Make the decision regiontargets = zeros(1,Nmu);if (Nmu > 1), for i = 1:Nmu, if (length(train_targets(:,find(label == i))) > 0), targets(i) = (sum(train_targets(:,find(label == i)))/length(train_targets(:,find(label == i))) > .5); end endelse %There is only one center targets = (sum(train_targets)/length(train_targets) > .5);endfeatures = mu;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -