📄 rda.m
字号:
function D = RDA (train_features, train_targets, lamda, region)% Classify using the Regularized descriminant analysis (Friedman shrinkage algorithm)% Inputs:% features - Train features% targets - Train targets% lamda - Parameter for the algorithm% region - Decision region vector: [-x x -y y number_of_points]%% Outputs% D - Decision sufracetrain_one = find(train_targets == 1);train_zero = find(train_targets == 0);%Estimate MLE mean and covariance for class 0m0 = mean(train_features(:,train_zero)');s0 = cov(train_features(:,train_zero)');n0 = length(train_zero);%Estimate MLE mean and covariance for class 1m1 = mean(train_features(:,train_one)');s1 = cov(train_features(:,train_one)');n1 = length(train_one);p0 = n0 / (n0+n1);%Shrink for class 0S = n0 * s0;n = n0;sigma0 = zeros(2);nk = n;sk = S; for i = 1:n, sk = (1 - lamda)*sk + lamda*S; nk = (1 - lamda)*nk + lamda*n; sigma0 = sk / nk; sigma0 = (1 - lamda) * sigma0 + lamda/2*trace(sigma0)*eye(2); sk = sigma0 * nk;end %Shrink for class 1S = n1 * s1;n = n1;sigma1 = zeros(2);nk = n;sk = S; for i = 1:n, sk = (1 - lamda)*sk + lamda*S; nk = (1 - lamda)*nk + lamda*n; sigma1 = sk / nk; sigma1 = (1 - lamda) * sigma1 + lamda/2*trace(sigma1)*eye(2); sk = sigma1 * nk;end D = decision_region(m0, sigma0, 1, m1, sigma1, 1, p0, region);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -