⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rda.m

📁 最新的模式识别分类工具箱,希望对朋友们有用!
💻 M
字号:
function D = RDA (train_features, train_targets, lamda, region)% Classify using the Regularized descriminant analysis (Friedman shrinkage algorithm)% Inputs:% 	features	- Train features%	targets	- Train targets%	lamda		- Parameter for the algorithm%	region	- Decision region vector: [-x x -y y number_of_points]%% Outputs%	D			- Decision sufracetrain_one  = find(train_targets == 1);train_zero = find(train_targets == 0);%Estimate MLE mean and covariance for class 0m0 = mean(train_features(:,train_zero)');s0 = cov(train_features(:,train_zero)');n0 = length(train_zero);%Estimate MLE mean and covariance for class 1m1 = mean(train_features(:,train_one)');s1 = cov(train_features(:,train_one)');n1 = length(train_one);p0 = n0 / (n0+n1);%Shrink for class 0S      = n0 * s0;n		 = n0;sigma0 = zeros(2);nk		 = n;sk	    = S;   for i = 1:n,   sk		 = (1 - lamda)*sk + lamda*S;   nk		 = (1 - lamda)*nk + lamda*n;   sigma0 = sk / nk;   sigma0 = (1 - lamda) * sigma0 + lamda/2*trace(sigma0)*eye(2);   sk		 = sigma0 * nk;end   %Shrink for class 1S      = n1 * s1;n		 = n1;sigma1 = zeros(2);nk		 = n;sk	    = S;   for i = 1:n,   sk		 = (1 - lamda)*sk + lamda*S;   nk		 = (1 - lamda)*nk + lamda*n;   sigma1 = sk / nk;   sigma1 = (1 - lamda) * sigma1 + lamda/2*trace(sigma1)*eye(2);   sk     = sigma1 * nk;end   D	= decision_region(m0, sigma0, 1, m1, sigma1, 1, p0, region);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -