📄 decision_region.m
字号:
function D = decision_region(m0, s0, w0, m1, s1, w1, p0, region)
%Function for making decision regions for Gaussians.
%Inputs are the means, std's and weights for the Gaussians.
%Output is the decision region matrix, based on a box of -5 to 5.
%If class probabilities are not specified, assume equal distribution
if ((nargin == 7) & (length(p0) > 1))
region = p0;
%region(1) = p0(1);
%region(5) = 100;
p0 = 0.5;
end
N = region(length(region)); %Number of points on the grid
x = ones(N,1) * linspace (region(1),region(2),N);
y = linspace (region(3),region(4),N)' * ones(1,N);
V0 = zeros(N,N);
V1 = zeros(N,N);
n0 = length(w0);
n1 = length(w1);
disp(['Detected ' num2str(n0) ' Gaussians for class 0 and ' num2str(n1) ' Gaussians for class 1'])
for i = 1:n0,
if (length(size(s0))>2),
sigma = squeeze(s0(i,:,:));
else
sigma = s0;
end
invsigma = inv(sigma);
V0 = V0 + w0(i) ./ (2 * pi * sqrt(abs(det(sigma)))) .* ...
exp(-0.5*(invsigma(1,1).*(x-m0(i,1)).^2 + ...
2*invsigma(2,1).*(x-m0(i,1)).*(y-m0(i,2))+invsigma(2,2).*(y-m0(i,2)).^2));
end
for i = 1:n1,
if (length(size(s1))>2),
sigma = squeeze(s1(i,:,:));
else
sigma = s1;
end
invsigma = inv(sigma);
V1 = V1 + w1(i) ./ (2 * pi * sqrt(abs(det(sigma)))) .* ...
exp(-0.5*(invsigma(1,1).*(x-m1(i,1)).^2 + ...
2*invsigma(2,1).*(x-m1(i,1)).*(y-m1(i,2))+invsigma(2,2).*(y-m1(i,2)).^2));
end
D = (V0*p0 < V1*(1-p0));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -