📄 deterministic_annealing.m
字号:
function [features, targets] = deterministic_annealing(train_features, train_targets, Nmu, region, plot_on)
%Reduce the number of data points using the deterministic annealing algorithm
%Inputs:
% train_features - Input features
% train_targets - Input targets
% Nmu - Number of output data points
% region - Decision region vector: [-x x -y y number_of_points]
% plot_on - Plot stages of the algorithm
%
%Outputs
% features - New features
% targets - New targets
if (nargin < 5),
plot_on = 0;
end
%Parameters:
epsi = .99; %Temperature reduction factor
T = max(eig(cov(train_features')'))/2; %Initial temperature
Tmin = 0.01; %Stopping temperature
[d,L] = size(train_features);
Ncent = 1;
label = zeros(1,L);
dist = zeros(Ncent,L);
iter = 0;
max_change = 1e-3;
%Initialize the mu's
mu = mean(train_features')';
while (T > Tmin),
iter = iter + 1;
%Find the distances from mu's to features
for i = 1:Ncent,
dist(i,:) = sum((train_features - mu(:,i)*ones(1,L)).^2);
end
dist = exp(-dist/T);
%Compute Gibbs distribution
P = dist ./ (ones(Ncent,1) * sum(dist));
%Recompute the mu's
old_mu = mu;
for i = 1:Ncent,
mu(:,i) = sum(((ones(d,1)*P(i,:)).*train_features)')'./(sum(P(i,:)));
end
if (sum(sum(abs(old_mu-mu))) <= max_change)
%Minimum reached, so decrease temperature ...
T = epsi * T;
if (Ncent >= Nmu),
%There are enough partitions
break
end
%...and add a center near the center that has the most variance
if (Ncent > 1),
for i = 1:Ncent,
dist(i,:) = sum((train_features - mu(:,i)*ones(1,L)).^2);
end
[m,label] = min(dist);
%Find the variance of the features around all the centers
Smu = zeros(1,Nmu);
for i = 1:Ncent,
Smu(i) = sum(std(train_features(:,find(label == i))'));
end
[m, max_std] = max(Smu);
else
max_std = 1;
end
Ncent = Ncent + 1;
mu(:,Ncent) = mu(:,max_std) + randn(d,1).*std(mu')'/10;
mu(:,max_std) = mu(:,max_std) + randn(d,1).*std(mu')'/10;
%mu(:,Ncent) = randn(2,1);
end
if (plot_on == 1),
plot_process(mu)
end
end
%Make the decision region
dist = zeros(Ncent,L);
for i = 1:Ncent,
dist(i,:) = sum((train_features - mu(:,i)*ones(1,L)).^2);
end
[m,label] = min(dist);
targets = zeros(1,Ncent);
if (Ncent > 1),
for i = 1:Ncent,
if (length(train_targets(:,find(label == i))) > 0),
targets(i) = (sum(train_targets(:,find(label == i)))/length(train_targets(:,find(label == i))) > .5);
end
end
else
%There is only one center
targets = (sum(train_targets)/length(train_targets) > .5);
end
features = mu;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -