⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 parzen.m

📁 最新的模式识别分类工具箱,希望对朋友们有用!
💻 M
字号:
function D = parzen(train_features, train_targets,params, region)% Classify using the Parzen windows algorithm% Inputs:% 	features  - Train features%	targets	  - Train targets%	param     - [hParzen, foo]  - Normalizing factor for h, unused%	region	  - Decision region vector: [-x x -y y number_of_points]%% Outputs%	D			- Decision sufracecomma_loc = findstr(params,',');hParzen   = str2num(params(2:comma_loc(1)-1));N		= region(5);								%Number of points on the gridx		= ones(N,1) * linspace (region(1),region(2),N);y		= linspace (region(3),region(4),N)' * ones(1,N);V0		= zeros(N);V1		= zeros(N);h_factor   = hParzen;train_one  = find(train_targets == 1);train_zero = find(train_targets == 0);%Estimate probabilities for for class 0%Estimate mean and covariance for class 0m0 = mean(train_features(:,train_zero)');s0 = cov(train_features(:,train_zero)');P0 = length(train_zero)/length(train_features);sigma0 = sqrt(sum(diag(s0)));h0 	 = sigma0/h_factor;n		= length(train_zero);for i = 1:n,   if (i/50 == floor(i/50)),      disp(['Finished ' num2str(i) ' iterations out of ' num2str(n) ' iterations.'])   end   temp = (x - train_features(1,train_zero(i))).^2 + (y - train_features(2,train_zero(i))).^2;   V0   = V0 + exp(-temp./(2*h0^2));endV0 = 1/(sqrt(2*pi)*h0^2)*V0/n;%Estimate mean and covariance for class 1m1 = mean(train_features(:,train_one)');s1 = cov(train_features(:,train_one)');P1 = length(train_one)/length(train_features);sigma1 = sqrt(sum(diag(s1)));h1 	 = sigma1/h_factor;n		= length(train_one);for i = 1:n,   if (i/50 == floor(i/50)),      disp(['Finished ' num2str(i) ' iterations out of ' num2str(n) ' iterations.'])   end   temp = (x - train_features(1,train_one(i))).^2 + (y - train_features(2,train_one(i))).^2;   V1   = V1 + exp(-temp./(2*h1^2));endV1 = 1/(sqrt(2*pi)*h1^2)*V1/n;D = (V0*P0 < V1*(1-P0));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -