📄 myperceptron.m
字号:
function w_percept = MyPerceptron(train_features, train_targets, alg_param)% Trains using the Perceptron algorithm% Inputs:% featvect - feature vectors: column = feature vector, row = feature% labels - Labels of feature vectors: 0 and 1 (do not use 2, 3 etc.% alg_param - Either: Number of iterations, weights vector or [weights, number of iterations]%% Outputs% weights - the weight vector% x * weights > 0 -> class 1% x * weights < 0 -> class 0[c, r] = size(train_features);%Weighted Perceptron or not?switch length(alg_param),case r + 1, %Ada boost form p = alg_param(1:end-1); max_iter = alg_param(end);case {r,0}, %No parameter given p = ones(1,r); max_iter = 5000;otherwise %Number of iterations given max_iter = alg_param; p = ones(1,r);endtrain_features = [train_features ; ones(1,r)];train_one = find(train_targets == 1);train_zero = find(train_targets == 0);%Preprocessingprocessed_features = train_features;processed_features(:,train_zero) = -processed_features(:,train_zero);%Initial weightsw_percept = rand(c+1,1);correct_classified = 0;n = length(train_targets);iter = 0;while ( (longest_run(w_percept, processed_features) < 0.9*n) ... & (iter < max_iter)) iter = iter + 1; indice = 1 + floor(rand(1)*n); if (w_percept' * processed_features(:,indice) <= 0) w_percept = w_percept + p(indice)* processed_features(:,indice); endenddisp(w_percept);if (iter == max_iter)&(length(alg_param)~= r + 1), disp(['Maximum iteration (' num2str(max_iter) ') reached']);end%Find decision region
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -