⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ls.m

📁 最新的模式识别分类工具箱,希望对朋友们有用!
💻 M
字号:
function [D, w] = LS(train_features, train_targets, weights, region)% Classify using the least-squares algorithm% Inputs:% 	features- Train features%	targets	- Train targets%	Weights	- Weighted for weighted least squares (Optional)%	region	- Decision region vector: [-x x -y y number_of_points]%% Outputs%	D			- Decision sufrace%	w			- Decision surface parameters[Dim, Nf]       = size(train_features);Dim             = Dim + 1;train_features(Dim,:) = ones(1,Nf);%Weighted LS or not?switch length(weights),case Nf + 1,    %Ada boost form    weights = weights(1:Nf);case Nf,    %Do nothingotherwise    weights = ones(1, Nf);endtrain_one  = find(train_targets == 1);train_zero = find(train_targets == 0);%Preprocess the targetsmod_train_targets = 2*train_targets - 1; w = inv((train_features .* (ones(Dim,1)*weights)) * train_features') * (train_features .* (ones(Dim,1)*weights)) * mod_train_targets';%w = pinv(train_features * train_features') * train_features * mod_train_targets';%Find decision regionN		= region(5);x		= ones(N,1) * linspace (region(1),region(2),N);y		= linspace (region(3),region(4),N)' * ones(1,N);D     = (w(1).*x + w(2).*y + w(3) > 0);w		= w';

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -