📄 prtools.m
字号:
%Pattern Recognition Tools (PRTOOLS 3.1.7)% Version 1 February 2002 (after PRSD course)%%Datasets and Mappings%---------------------%dataset Define and retrieve dataset from datamatrix and labels%datasets List information on datasets (just help, no command)%getlab Retrieve object labels from datasets and mappings%getfeat Retrieve feature labels from dataset%getlablist Retrieve names of classes%classsizes Retrieves sizes of classes%getprob Retrieves class prior probabilities%genlab Generate dataset labels%mapping Define and retrieve mapping and classifier from data%mappings List information on mappings (just help, no command)%renumlab Convert labels to numbers%matchlab Match different labelings%%Data Generation %---------------%gauss Generation of multivariate Gaussian distributed data%gencirc Generation of a one-class circular dataset%gendat Generation of classes from given data set%gendatb Generation of banana shaped classes%gendatc Generation of circular classes%gendatd Generation of two difficult classes%gendath Generation of Higleyman classes%gendatk Nearest neighbour data generation%gendatl Generation of Lithuanian classes%gendatm Generation of 8 2d classes%gendatp Parzen density data generation%gendats Generation of two Gaussian distributed classes%gendatt Generation of testset from given dataset%prdata Read data from file%seldat Select classes / features / objects from dataset%%Linear and Quadratic Classifiers %--------------------------------%klclc Linear classifier by KL expansion of common cov matrix%kljlc Linear classifier by KL expansion on the joint data%loglc Logistic linear classifier%fisherc Minimum least square linear classifier%ldc Normal densities based linear (muli-class) classifier%nmc Nearest mean linear classifier%nmsc Scaled nearest mean linear classifier%perlc Perceptron linear classifier%persc Perceptron linear classifier%pfsvc Pseudo-Fisher support vector classifier%qdc Normal densities based quadratic (multi-class) classifier%udc Uncorrelated normal densities based quadratic classifier%quadrc Quadratic classifier%polyc Add polynomial features and run arbitrary classifier%%classc Converts a mapping into a classifier%classd General classification routine for trained classifiers%testd General error estimation routine for trained classifiers%%Other Classifiers %-----------------%knnc k-nearest neighbour classifier (find k, build classifier)%knn_map k-nearest neighbour mapping%testk Error estimation for k-nearest neighbour rule%%parzenc Parzen density based classifier%parzenml Optimization of smoothing parameter in Parzen density estimation.%parzen_map Parzen mapping%testp Error estimation for Parzen classifier%%edicon Edit and condense training sets%%treec Construct binary decision tree classifier%tree_map Classification with binary decision tree%%bpxnc Train feed forward neural network classifier by backpropagation%lmnc Train feed forward neural network by Levenberg-Marquardt rule%neurc Automatic Neural Network Classifier (using lmnc)%rbnc Train radial basis neural network classifier%rnnc Random neural network classifier%%subsc Subspace Classifier%svc Support vector classifier%%Normal Density Based Classification%-----------------------------------%distmaha Mahalanobis distance%normal_map Normal density mapping%meancov Estimation of means and covariance matrices from multiclass data%nbayesc Bayes classifier for given normal densities%ldc Normal densities based linear (muli-class) classifier%qdc Normal densities based quadratic (multi-class) classifier%udc Uncorrelated normal densities based quadratic classifier%testn Error estimate of discriminant on normal distributions%%Feature Selection%-----------------%feateval Evaluation of a feature set%featrank Ranking of individual feature permormances%featselb Backward feature selection%featself Forward feature selection%featseli Feature selection on individual performance%featselm Feature selection map, general routine for feature selection%featselo Branch and bound feature selection%featselp Floating forward feature selection%featselm Feature selection map, general routine for feature selection%%Classifiers and tests (general)%-------------------------------------%classim Classify image using a given classifier%classc Convert mapping to classifier%classd General classification routine for trained classifiers%cleval Classifier evaluation (learning curve)%clevalb Classifier evaluation (learning curve), bootstrap version%clevalf Classifier evaluation (feature size curve)%confmat Computation of confusion matrix%crossval Crossvalidation %cnormc Normalisation of classifiers%mclassc Computation of multi-class classifier from 2-class discriminants%reject Compute error-reject trade-off curve%roc Receiver-operator curve%testd General error estimation routine for trained classifiers%%Mappings%--------%classs Linear mapping by classical scaling%cmapm Compute some special maps%featselm Feature selection map, general routine for feature selection%fisherm Fisher mapping%invsigm Inverse sigmoid map%klm Decorrelation and Karhunen Loeve mapping (PCA)%klms Scaled version of klm, useful for prewhitening%lmnm Levenberg-Marquardt neural net diabolo mapping%maf Maximum autocorrelation mapping (ICA)%mds Non-linear mapping by multi-dimensional scaling (Sammon)%nlfisherm Nonlinear Fisher mapping%normm Object normalization map%pca Principal Component Analysis%proxm Proximity mapping and kernel construction%reducm Reduce to minimal space mapping%scalem Compute scaling data%sigm Simoid mapping%spatm Augment image dataset with spatial label information%subsm Subspace mapping%svm Support vector mapping, useful for kernel PCA%%Classifier combiners%--------------------%baggingc Bootstrapping and aggregation of classifiers%majorc Majority classifier combiner (Voting)%maxc Maximum classifier combiner%minc Minimum classifier combiner%meanc Mean classifier combiner%medianc Median classifier combiner%prodc Product classifier combiner%traincc Train combining classifier%parsc Parse classifier or map%rsubc Random Subspace Classifier%%Image operations%----------------%classim Classify image using a given classifier%dataim Image operation on dataset images%data2im Convert dataset to image%getimheight Retrieve image height of images in datasets%dataimsize Retrieve image size of images in datasets%datfilt Filter dataset image%datgauss Filter dataset image by Gaussian filter%datunif Filter dataset image by uniform filter%im2obj Convert image to object in dataset%im2feat Convert image to feature in dataset%image Display images stored in dataset%show Display of dataset images and mapping eigen-images%spatm Augment image dataset with spatial label information%%Clustering and distances%------------------------%distm Distance matrix between two data sets.%emclust Expectation - maximization clustering%proxm Proximity mapping and kernel construction%hclust Hierarchical clustering%kcentres k-centres clustering%kmeans k-means clustering%modeseek Clustering by modeseeking%%Plotting%--------%gridsize Set gridsize of scatterd, plotd and plotm plots%plotd Plot discriminant function for two features%plot2 Plot 2d function%plotf Plot feature distribution%plotm Plot mapping%plotdg Plot dendrgram (see hclust)%scatterd Scatterplot%%Examples%--------%prex1 Classifiers and scatter plot%prex2 Plot learning curves of classifiers%prex3 Multi-class classifier plot%prex4 Classifier combining%prex5 Use of images and eigenfaces%prex6 Multi-band image segmentation%prex7 Independent Component Analysis of multi-band image%% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -