⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 testn.m

📁 模式识别工具箱,本人毕业论文时用到的,希望对大家有用!
💻 M
字号:
%TESTN Error estimate of discriminant for normal distribution.% % 	e = testn(W,U,G,n)% % n normally distributed data vectors with means, labels and prior % probabilities defined by the dataset U (size [c,k]) and covariance % matrices G (size [k,k,c]) are generated with the specified labels % and are tested against the discriminant W. The fraction of  % incorrectly classified data vectors is returned. If W is a linear % discriminant and n is not specified the error is computed % analytically. Defaults: n = 10000, G = identity, U = origin.% % See also mappings, datasets, qdc, nbayesc, testd% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction e = testn(w,U,G,m)[v,lablist,type,k] = mapping(w);if nargin < 4, m = 10000; endif nargin < 3, G = eye(k); endif nargin < 2	u = zeros(1,k); else	[nlab,lablist,c,k,c,p] = dataset(U);	u = +U;end		% check for analytical caseif length(size(G)) == 2	g = G;	for j=2:c		G = cat(3,G,g);	endendif nargin < 4 & strcmp(type,'affine')	e = 0;	for j=1:c		q = real(sqrt(v(1:k)*G(:,:,j)*v(1:k)'));		J = find(nlab==j);		if length(J)~=1			error('Wrong labels assigned')		end		d = (2*j-3)*(v(1:k)*u(J,:)'+v(k+1));		if q == 0			if d>=0, e=e+p(j); end		else			e = e+p(j)*(erf(d/(q*sqrt(2)))/2 + 0.5);		end	endelse		% generate data	a = gauss(m,U,G); 	e = testd(w,a);endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -