📄 clevalf.m
字号:
%CLEVALF Classifier evaluation (feature size curve)% % [e,s] = clevalf(classf,A,featsizes,learnsize,n,T,print)% % Generates at random for all feature sizes stored in featsizes% training sets of the given learnsize out of the dataset A.% These are used for training the untrained classifier classf.% The result is tested by the test dataset T, or, if not% given, by all unused objects in A. This is repeated n times.% If learnsize is not given or empty, the training set is bootstrapped.% Default featsizes: all feature sizes.% The mean erors are stored in e. The observed standard deviations% are stored in s.% % This function uses the rand random generator and thereby % reproduces if its seed is reset.% % See also cleval, clevalb, testd, mappings, datasets% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction [err,sd] = clevalf(classf,a,featsizes,learnsize,n,T,print)[m,k] = size(a);if nargin < 7, print = 0; end;if nargin < 6, T = []; endif nargin < 5, n = 1; end;if nargin < 4, learnsize = []; endif nargin < 3 | isempty(featsizes), featsizes = [1:k]; endif ~isa(classf,'mapping'), error('First parameter should be mapping'); ende1 = zeros(n,length(featsizes));s = rand('seed');for i = 1:n [b,T] = gendat(a,learnsize); for j=1:length(featsizes) f = featsizes(j); e1(i,j) = b(:,1:f)*classf*T(:,1:f)*testd; if print, fprintf('.'); end endendif print, fprintf('\n'); end err = mean(e1,1);if n == 1 sd = zeros(size(err));else sd = std(e1);endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -