⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clevalf.m

📁 模式识别工具箱,本人毕业论文时用到的,希望对大家有用!
💻 M
字号:
%CLEVALF Classifier evaluation (feature size curve)% % 	[e,s] = clevalf(classf,A,featsizes,learnsize,n,T,print)% % Generates at random for all feature sizes stored in featsizes% training sets of the given learnsize out of the dataset A.% These are used for training the untrained classifier classf.% The result is tested by the test dataset T, or, if not% given, by all unused objects in A. This is  repeated n times.% If learnsize is not given or empty, the training set is bootstrapped.% Default featsizes: all feature sizes.% The mean erors are stored in e. The observed standard deviations% are stored in s.% % This function uses the rand random generator and thereby % reproduces if its seed is reset.% % See also cleval, clevalb, testd, mappings, datasets% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction [err,sd] = clevalf(classf,a,featsizes,learnsize,n,T,print)[m,k] = size(a);if nargin < 7, print = 0; end;if nargin < 6, T = []; endif nargin < 5, n = 1; end;if nargin < 4, learnsize = []; endif nargin < 3 | isempty(featsizes), featsizes = [1:k]; endif ~isa(classf,'mapping'), error('First parameter should be mapping'); ende1 = zeros(n,length(featsizes));s = rand('seed');for i = 1:n	[b,T] = gendat(a,learnsize);	for j=1:length(featsizes)		f = featsizes(j);		e1(i,j) = b(:,1:f)*classf*T(:,1:f)*testd;		if print, fprintf('.'); end	endendif print, fprintf('\n'); end err = mean(e1,1);if n == 1	sd = zeros(size(err));else	sd = std(e1);endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -