⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 scalem.m

📁 模式识别工具箱,本人毕业论文时用到的,希望对大家有用!
💻 M
字号:
%SCALEM Compute scaling map% % 	W = scalem(A)% % W is a map that shifts the origin to the mean of the dataset A.% % 	W = scalem(A,'variance')% % The origin is shifted to the mean of A and the variances of all % features is scaled to 1. % % 	W = scalem(A,'c-variance')% % Instead of the overal variance, now the mean class variance % (within-scatter) is normalized.% % 	W = scalem(A,'domain')% % W is a map that sets the domain for all features in the dataset A % to (0,1).%%	W = scalem(A,'2-sigma')%% W is a map that rescales the 2-sigma interval for each feature% to the [0,1] interval and clips values outside this domain.% % Scaling by variance and mean is weighted by the class % probabilities if A is a labeled dataset.% % A map may be applied on a new dataset B by B*W.% % See also mappings, datasets% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction W = scalem(a,t)if nargin < 2, t = []; endif nargin < 1 | isempty(a)	W = mapping('scalem',t);	returnend[nlab,lablist,m,k,c,p] = dataset(a);if nargin == 1 | isempty(t)	U = meancov(a);	s = ones(1,k);	u = p'*double(U);	clip = 0;elseif strcmp(t,'variance')	U = meancov(a);	G = zeros(c,k);	for j = 1:c		J = find(nlab==j);		G(j,:) = std(a(J,:),1).^2;	end	u = p'*double(U);	uu = double(U) - repmat(u,c,1);	G = G + uu.^2;	s = sqrt(p'*G);	clip = 0;elseif strcmp(t,'c-variance')	U = meancov(a);	G = zeros(c,k);	for j = 1:c		J = find(nlab==j);		G(j,:) = std(a(J,:),1).^2;	end	u = p'*double(U);	s = sqrt(p'*G);	clip = 0;elseif strcmp(t,'domain')	mx = max(a,[],1)+eps; mn = min(a,[],1)-eps;	u = mn; s = (mx - mn)*(1+eps);	clip = 0;elseif strcmp(t,'2-sigma')	U = meancov(a);	G = zeros(c,k);	for j = 1:c		J = find(nlab==j);		G(j,:) = std(a(J,:),1).^2;	end	u = p'*double(U);	uu = double(U) - repmat(u,c,1);	G = G + uu.^2;	s = 4*sqrt(p'*G);	u = u-0.5*s;	clip = 1;elseif strcmp(t,'clip')	s = ones(1,k); u = zeros(1,k); clip = 1;else	error('Unknown option')endJ = find(s==0);s(J) = realmin*ones(size(J));ss = 1./s;W = mapping('normalize',{u,ss,clip},getfeat(a),k,k);return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -