⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svc.m

📁 模式识别工具箱,本人毕业论文时用到的,希望对大家有用!
💻 M
字号:
%SVC Support Vector Classifier% % 	[W,J] = svc(A,type,par,C)% % Optimizes a support vector classifier for the dataset A by % quadratic programming. The classifier can be of one of the types % as defined by proxm. Default is linear (type = 'p', par = 1). In J % the indices of the support objects are returned. C < 1 allows for % more class overlap. Default C = 1.% % See also datasets, mapppings, proxm% Copyright: D. de Ridder, D. Tax, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands  function [W,J] = svc(a,type,par,C)if nargin < 4 | isempty(C), C = 1; endif nargin < 3 | isempty(par), par = 1; endif nargin < 2 | isempty(type), type = 'p'; endif nargin < 1 | isempty(a)	W = mapping('svc',{type,par,C});	returnend	[nlab,lablist,m,k,c] = dataset(a);if c > 2	W = [];	J = zeros(1,m);	for i=1:c		mlab = 2 - (nlab == i);		aa = dataset(a,mlab);		[v,j] = svc(aa,type,par,C);		W = [W,mapping(v,lablist(i,:))];		J(j) = ones(1,length(j));	end	J = find(J);else	y = 3 - 2*nlab;	u = mean(a);	a = a -ones(m,1)*u;	K = a*proxm(a,type,par);	[v,J] = svo(+K,y,C);	if isnan(v)		v = double(fisherc(K));		J = [1:m];	end	W = mapping('support-vector',{u,a(J,:),v},lablist,k,1,1,{type,par});	W = cnormc(W,a);endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -