⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gausspdf.m

📁 模式识别工具箱,希望对大家有用!
💻 M
字号:
function y = gausspdf(x,mu,sigma,lambda)%% Y = gausspdf(X,MU,SIGMA)%% High dimensional version of normpdf. Given the MU and SIGMA, the% density at points X is computed. It is assumed that all objects are% row objects.% Per default, just the inverse of the covariance matrix is computed.%% Y = gausspdf(X,MU,SIGMA,lambda)%% When lambda>0, the covariance matrix is regularized by:%%  sigma' = sigma + lambda*eye(dim)%% For lambda<0 the pseudo-inverse is used.%% default 1D mu=0, sigma=1% Copyright: D. Tax, R.P.W. Duin, davidt@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsif nargin<4  lambda = [];endif nargin<3  sigma = 1;endif nargin<2  mu = 0;endif nargin<1  error('Requires at least on input argument.');end% check sizes:[rx,cx] = size(x);[rm,cm] = size(mu);[rs,cs] = size(sigma);if (cx ~= cm) | (cx ~= cs)  error('Number of columns in X, MU and SIGMA should be equal');end% mean, inv-covariance and mahanalobis distance:X = x - ones(rx,1)*mu;if isempty(lambda)  Sinv = inv(sigma);else  if (lambda<0)    Sinv = pinv(sigma);  else    Sinv = inv(sigma + lambda*eye(cs));  endendd2 = sum((X*Sinv).*X,2);% normalize to pdf:detSinv = det(Sinv);if (detSinv<0)  % annoying when near-singular cov.matrix  detSinv = -detSinv;  % hack hack hackendy = sqrt(detSinv/((2*pi)^cx))*exp(-d2/2);return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -