📄 dd_aic.m
字号:
function e = dd_aic(w,x)%DD_AIC compute the Akaike Information Criterion for MoG%% e = dd_aic(w,x)%% Compute the Akaike Information Criterion of the Mixture of% Gaussians. We assume we have a trained classifier w and data x.%% also see dd_error, dd_roc, dd_auc% Copyright: D. Tax, R.P.W. Duin, davidt@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands[W,labl,map,d] = mapping(w)if ~strcmp(map,'mog_dd')endp = w*x; p = +p(:,1);switch map case 'gauss_dd' nrparam = d + d*(d+1)/2; %mean and cov.matrix case 'parzen_dd' nrparam = 1; %width parameter case 'mog_dd' c = size(W{1},1); [n,d] = size(x); % the number of parameters % for all covariance versions, the priors and the means are the same: nrparam = c + c*d; switch ctype case 'sphr' nrparam = nrparam + c; case 'diag' nrparam = nrparam + c*d; case 'full' nrparam = nrparam + c*d*(d+1)/2; otherwise error('Type of covariance matrix not recognized') end otherwise error('AIC cannot be computed for this mapping!');end% For the loglikelihood:e = -2*sum(log()) + 2*nrparam;%strangely this one does not seem to work!:%e = -2*sum(log(sum(p,2))) + 2*nrparam/n;return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -