📄 contents.m
字号:
%Data Description Toolbox (version 0.8)
%
%Dataset construction
%--------------------
%oc_set change normal classif. problem to one-class problem
%target_class extracts the target class from an one-class dataset
%make_outliers create outlier data around target class
%gendatgrid create a grid dataset around a 2D dataset
%gendatout create outlier data in a hypersphere around target
% the data
%
%Data preprocessing
%------------------
%kwhiten rescale data to unit variance in kernel space
%
%One-class classifiers
%---------------------
%random_dd description which randomly assigns labels
%gauss_dd data description using normal density
%mog_dd mixture of Gaussians data description
%parzen_dd Parzen density data description
%
%autoenc_dd auto-encoder neural network data description
%kcenter_dd k-center data description
%kmeans_dd k-means data description
%pca_dd principal component data description
%
%nndd nearest neighbor bases data description
%svdd Support vector data description
%range_svdd SVDD over a range of scales (useful for ROC computation).
%lpdd linear programming data description
%
%Error computation.
%-----------------
%dd_error false positive and negative fraction of classifier
%dd_roc computation of the Receiver-Operating Characterisic curve
%dd_auc error under the ROC curve
%dd_delta_aic AIC error for density estimators
%
%Support functions.
%-----------------
%is_ocset true if dataset is one-class dataset
%is_occ true if classifier is one-class classifier
%find_target gives the indices of target and outlier objs from a dataset
%dist2dens map distance to posterior probabilities
%threshold give percentiles for a sample
%setthres set the threshold for a one-class classifier
%randsph create outlier data uniformly in a unit hypersphere
%makegriddat auxiliary function for constructing grid data
%plotg plot a 2D grid of function values
%plotw plot a 2D real-valued output of classifier w
%relabel relabel a dataset
%ddistm distance matrix for different types of distances
%lpdistm L-p distances
%center center the kernel matrix in kernel space
%
%Examples
%--------
%dd_example show performance of nndd and svdd
%
% Copyright: D. Tax, R.P.W. Duin, davidt@ph.tn.tudelft.nl
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -