📄 autoenc_dd.m
字号:
%AUTOENC_DD Auto-Encoder data description.% % W = autoenc_dd(A,fracrej,N)% % Train an Auto-Encoder network with N hidden units.% % See also datasets, mappings, dd_roc% Copyright: D. Tax, R.P.W. Duin, davidt@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction [W,out] = autoenc_nn(a,fracrej,N)if nargin < 3 | isempty(N), N = 5; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) % empty nndd W = mapping(mfilename,{fracrej,N}); returnendif isa(fracrej,'double') %training if ~isa(a,'dataset') %train on training set error('I need a dataset to train'); end a = target_class(a); % make sure a is an OC dataset [nlab,lablist,m,k,c] = dataset(a); [nrx,dim] = size(+a); minmax = [min(+a)' max(+a)']; net = newff(minmax,[N dim],{'tansig','purelin'},'trainlm'); net = init(net); net.trainParam.show = inf; net.trainParam.lr = 0.01; net.trainParam.goal = 1e-5; net = train(net,+a',+a'); % obtain the threshold: aout = sim(net,+a'); d = sum((a-aout').^2,2); thr = -threshold(-d,fracrej); %and save all useful data: W.net = net; W.scale = mean(d); W.threshold = thr; W = mapping(mfilename,W,str2mat('target','outlier'),k,c);else %testing [W,classlist,type,k,c] = mapping(fracrej); % unpack [nlab,lablist,m,k,c,p] = dataset(a); %compute distance: out = sim(W.net,+a')'; out = [sum((a-out).^2,2) ones(m,1)*W.threshold]; % map to probability newout = dist2dens(out,W.scale); W = dataset(newout,getlab(a),classlist,p,lablist);endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -